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Cellular functions are determined by interactions among proteins in the cells. Recognition of these interactions forms
an important step in understanding biology at the systems level. Here, we report an interaction network of Escherichia
coli, obtained by training a Support Vector Machine on the high quality of interactions in the EcoCyc database, and
with the assumption that the periplasmic and cytoplasmic proteins may not interact with each other. The data
features included correlation coefficient between bit score phylogenetic profiles, frequency of their co-occurrence in
predicted operons, and a new measure—the distance between translational start sites of the genes. The combined
genome context methods show a high accuracy of prediction on the test data and predict a total of 78,122 binary
interactions. The majority of the interactions identified by high-throughput experimental methods correspond to
indirect interaction (interactions through neighbors) in the predicted network. Correlation of the predicted network
with the gene essentiality data shows that the essential genes in E. coli exhibit a high linking number, whereas the
nonessential genes exhibit a low linking number. Furthermore, our predicted protein–protein interaction network
shows that the proteins involved in replication, DNA repair, transcription, translation, and cell wall synthesis are
highly connected. We therefore believe that our predicted network will serve as a useful resource in understanding
prokaryotic biology.

[Supplemental material is available online at www.genome.org.]

Living systems are made up of molecular entities, interactions
among which give rise to the complex properties of life that are
not apparent in the individual molecules. The complex proper-
ties of life can now be addressed at the systems level because of
the availability of complete genome sequences of several organ-
isms. Proteins being the dominant molecules of life, much focus
has been on understanding protein–protein interactions in the
recent past (Barabasi and Oltvai 2004). A wide range of experi-
ments has been carried out in order to map genome-wide pro-
tein–protein interactions in different organisms (Rain et al. 2001;
Li et al. 2004; Suthram et al. 2005; Krogan et al. 2006; Stelzl et al.
2006). The high-throughput experiments typically limit the ob-
servations to only a fraction of all possible interactions since the
experiments are carried out under unique conditions. This has
led to the development of many algorithms to predict genome-
wide protein–protein interactions (Bork et al. 2004). By under-
standing the network of these complex interactions, it is hoped
that our understanding of the living systems will be enhanced
considerably.

The interactions between proteins can be classified into two
major categories: physical and functional. The former refer to
physical association between two proteins, whereas the latter re-
fer to the proteins in a biochemical or a signaling pathway. In-
ferences of functional interactions can be obtained from meth-
ods such as coexpression data from microarray analysis. Physical
interactions, on the other hand, can be detected by direct experi-
mental techniques such as pull-down assays, coimmunoprecipi-

tation, or tandem affinity purification coupled to mass spectrom-
etry. Such techniques are also amenable to high-throughput ex-
perimentation.

Experimental detection of genome-wide protein–protein in-
teractions is costly, time-consuming, and difficult to implement
in a modestly equipped laboratory. Moreover, there is little over-
lap between the results obtained from different experimental
methods (von Mering et al. 2002; Arifuzzaman et al. 2006; Kro-
gan et al. 2006). There thus exists a substantial scope for compu-
tational analysis in the areas of evaluation of the quality of ex-
perimental data, and more importantly in predicting genome-
wide protein–protein interactions.

Algorithms that identify genome-wide interactions between
proteins mainly focus on coregulation of interacting proteins.
These methods assume that the genes that are coregulated often
occur close to each other on the genomes and show conserved
gene order. Thus the genes, which are part of an operon, could be
functionally linked (Dandekar et al. 1998; Overbeek et al. 1999).
These methods, however, fail to identify functional links be-
tween the proteins that are distantly located on a genome. A
modified method has been used to infer functional links between
genes that are distantly located in one genome but whose or-
thologs may be a part of an operon in another genome (Janga et
al. 2005).

The coevolution method attempts to calculate evolutionary
rates of substitutions in different proteins and assumes that the
proteins that evolve at similar rates are parts of an interacting
pair (Fraser et al. 2002). Alternatively, the phylogenetics profile
method detects protein interactions by identifying correlations
between the presence and the absence of genes across the ge-
nomes (Pellegrini et al. 1999).

In this study, we propose a computational method that
identifies protein–protein interactions on the basis of distance
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between translational start sites of two genes and the frequency
of co-occurrence of the genes in predicted operons. These two
features are combined with phylogenetics profiles using a Sup-
port Vector Machine to infer the genome-wide functional link-
ages in Escherichia coli. The Support Vector Machine when
trained on high-quality experimental data performs well in blind
tests, with the accuracies of prediction often exceeding 85%. The
network of interactions constructed using our predictions exhib-
its characteristic scale-free topology and an excellent correlation
with the experimental gene essentiality data. We therefore be-
lieve that the network of interactions predicted by our method
will be a useful tool in understanding the biology of E. coli.

Results and Discussion

Data for prediction of protein–protein interactions

Interactions between pairs of proteins were derived using a Sup-
port Vector Machine (SVM) trained on the interactions reported
in the EcoCyc database (Keseler et al. 2005). These linkages rep-
resent hand-curated data obtained essentially through low-
throughput experimental approaches. Moreover, these interac-
tions are deduced from multiple experiments and are therefore
likely to be free of the false positives or bias that is often associ-
ated with high-throughput experiments. Supplemental Tables I
and II list the data sets used for supervised learning. The learning
set contained 1082 proteins pairs, which were further divided
into operonic (654) (Supplemental Table I) and non-operonic
data sets (428) (Supplemental Table II) as defined in the EcoCyc
database.

Defining a reliable negative data set for predicting func-
tional linkages using machine-learning techniques has been ac-
knowledged to be a difficult problem (Jansen et al. 2003; Ben-Hur
and Noble 2006). The negative data for predicting functional
linkages in eukaryotes were assumed to be those proteins that are
not colocalized in the same subcellular compartment (Jansen et
al. 2003). Similarly, in prokaryotes it might seem reasonable that
the proteins required for physiological functions in the extracel-
lular or the periplasmic milieu would not physically interact with
the proteins of the cytoplasmic space. We therefore formulated a
negative data set, in which each protein pair comprises one se-
creted protein and the other localized in the cytoplasm. Thus,
proteins with a known secretory signal were first identified, and
were considered separately from the proteins without any signal
peptide. The top-scoring 40 proteins with the predicted signal
sequence at the N terminus were considered to be periplasmic,
while 346 proteins that do not possess any of the known signal
sequences along the entire length of the polypeptide were con-
sidered to be cytoplasmic (Supplemental Table III). Combining
one periplasmic and one cytoplasmic protein therefore generated
13,840 pairs. The pairs in the negative data set did not belong to
any known complex, or metabolic pathway, and therefore were
assumed to lack functional linkages.

Having defined the positive and the negative data sets for
supervised machine learning, predictions were carried out for
assessing functional linkages between all the possible protein
pairs in the E. coli K12 genome. Three different data features,
namely, frequency of co-occurrence in predicted operons, phy-
logenetic profile correlation score, and minimum distance be-
tween the two genes on any of the 266 genomes, were used for
these predictions as described in Methods.

Frequency of co-occurrence in predicted operons

Several different prediction methods exist in the literature for the
identification of operons. These are based on features such as
intergenic distance, functional correlation, and conserved gene
neighborhood (Salgado et al. 2000; Ermolaeva et al. 2001; Zheng
et al. 2002). We used a Support Vector Machine to identify op-
erons in all the prokaryotic genomes using intergenic distance
between the transcription start sites of the genes as the data fea-
ture.

The average accuracy of fivefold cross-validation for operon
prediction was 82%. The model with the highest accuracy was
used to predict operons in the 124 prokaryotic genomes. This led
to the prediction of a total of 786 polycistronic transcription
units in E. coli K12.

Phylogenetic profile method

The phylogenetic profile of a gene can be represented in two
different ways: a binary profile (Pellegrini et al. 1999) or a nor-
malized bit score profile (Enault et al. 2003). In the former, the
presence or absence of a homolog is represented as 1 or 0, respec-
tively, whereas in the latter, the same is represented as the nor-
malized bit score obtained from BLAST. Two genes displaying a
similar phylogenetic profile, as assessed by Pearson correlation
coefficient, therefore can be assumed to be functionally linked.
We constructed phylogenetic profiles for all the genes of E. coli
based on both the methods.

Effect of gene conservation on prediction accuracy

Assessment of functional linkage between two genes may not
always be possible by inspection of their phylogenetic profiles,
especially if these two genes are present in only a few closely
related organisms. Moreover, the phylogenetic profiles of the
genes that are specific to a lineage are likely to show a high
correlation coefficient among them, since these are absent in a
large number of genomes, but present only in a few closely re-
lated species. This might result in reporting false-positive inter-
actions among these genes. Thus, the choice of training the SVM
using these data can critically affect the results of prediction. This
is especially true for the negative training data. We therefore
assessed the effect of training data on the accuracy of predictions
by taking into consideration the conservation of genes in the
phylogenetic profiles.

The conservation score for any gene was defined as the total
number of genomes that possess homologs of the gene under
consideration (Sun et al. 2005). The conservation score of a pair
of genes was, in turn, defined as the minimum conservation
score of any of the two genes in the pair. To understand the effect
of conservation score of a gene pair on prediction accuracy of the
phylogenetic profile method using bit score, we used two-thirds
of the randomly picked data from the positive and negative data
sets for training and the remaining one-third for testing the pre-
diction accuracy. The process was repeated 50 times, each time
by incrementing the cutoff conservation score by 1 in the nega-
tive data set while retaining the same positive data. Figure 1A
shows that the prediction accuracy of protein–protein interac-
tions gradually increases until the conservation score of 20 be-
cause of an increase in sensitivity, and then decreases because of
a decrease in specificity. The accuracy remains constant beyond
the conservation score of 12, and therefore we considered phy-
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logenetic profiles of the genes that are conserved in at least 12
genomes.

Similar analysis was performed with the binary phyloge-
netic profile, where the outcome of the analysis was also similar.
These results, as shown in Figure 1B, lead to two major conclu-
sions: (1) the prediction accuracy of both the methods increases
by increasing the cutoff value of the conservation score for the
genes in the negative data set, and (2) the sensitivity of the pre-
dictions is low at low conservation scores, while the specificity is
low at high conservation scores. Specificity rapidly decreases for
both the methods at high conservation scores. However, for the
binary phylogenetic profiles, the specificity drops to zero at high
conservation scores.

Gene distance method

Genes that are closer to each other usually show stronger func-
tional linkages and the possibility of coregulation by an operon
or transcriptional coupling (Korbel et al. 2004). Analysis of the
1082 gene pairs that code for components of protein complexes
showed that a large number of them (428) are not part of oper-
ons. These gene pairs were distantly located in the E. coli K12
genome, but interestingly their orthologs were closer to each
other in at least one other genome as shown in Figure 2A. This

suggests that functionally related genes tend to occur close to
each other in at least one genome.

Intergenic distance was analyzed for all the hypothesized
noninteracting gene pairs in the negative data set (Fig. 2B). In-
terestingly, the normalized distance between the translational
start sites in these pairs of proteins is evenly distributed between
0 (minimum possible normalized distance) and 50 (maximum
possible normalized distance) in E. coli. The same distribution is
skewed toward lower values when a minimum normalized dis-
tance between the same pairs across all the genomes was calcu-
lated. Comparison of the normalized intergenic distances across
all the genomes showed that 80% of the interacting proteins are
spaced closely (normalized gene distance <1) in at least one ge-
nome, whereas only 10% of the hypothesized noninteracting
pairs possess a normalized gene distance <1.

Cross-validation accuracy of prediction
of protein–protein interactions

To compare the accuracy of prediction of different methods for
protein–protein interactions, we calculated the average sensitiv-
ity and specificity of each prediction by fivefold cross-validation.
Table 1 shows the comparison of fivefold cross-validation for the
three different data features and their combinations. The combi-
nation of all the three data features appears to be the best choice

Figure 2. Normalized gene distance distributions among the data sets
used for prediction of protein–protein interactions. The normalized gene
pair distance is defined as the number of base pairs that separate the
translation start sites of two genes in a pair, divided by the total genome
length and then scaled to 100. (A) (Gray) Normalized distances between
the known interacting protein pairs in E. coli; (black) the minimum nor-
malized distance between the same proteins on any of the other ge-
nomes. (B) Normalized distances between the protein pairs, which are
hypothesized to be noninteracting. (Gray line) The normalized distance
distribution in E. coli; (black line) the minimum of this between the same
pair of proteins in any other genome.

Figure 1. Effect of gene conservation score on the accuracy of protein–
protein interaction predictions using phylogenetic profiles. (A) Profiles of
the two genes in a pair are compared using the normalized bit scores. (B)
Profiles of the two genes in a pair are compared using the presence (1) or
absence (0) of the genes. Accuracy is defined as the average of sensitivity
and specificity as described in Methods. It is clearly seen that the predic-
tion accuracy is poorer at low and high conservation scores. See text for
details.

Prediction of genome-wide functional linkages
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for prediction of protein–protein interactions. The average accu-
racy of predictions reaches as high as 89.5% in the best predic-
tion. The network predicted using two features, namely, mini-
mum distance and phylogenetic profile, showed similar sensitiv-
ity and specificity values as those predicted using all three data
features. Nonetheless, the number of false positives predicted
during cross-validation using only two features was higher than
that using three features. Therefore, we used all three data fea-
tures to predict genome-wide functional linkages.

Genome-wide prediction of protein interactions in E. coli

The prediction of genome-wide interactions in E. coli resulted in
a total of 78,122 binary interactions (Table 1). The high specific-
ity values clearly suggest that the number of false-positive inter-
actions in the predicted network would be minimal. On the other
hand, sensitivity being determined by the total number of iden-
tified interactions among all the theoretically possible interac-
tions, lower sensitivity values suggest that the total number of
interactions reported by us might represent a lower estimate.
Thus, we believe that the number of all pairwise protein–protein
interactions in E. coli will be in excess of 78,122.

Comparison of the predicted network
with high-throughput experimental data

The predicted protein–protein interactions were compared with
the results of two high-throughput experimental data sets (But-
land et al. 2005; Arifuzzaman et al. 2006). It was observed that
among the 5418 interactions identified by the pull-down assays
by the TAP-tagged bait protein method, our method predicted
635 direct interactions and 4513 indirect (binary, ternary, or qua-
ternary) interactions (Butland et al. 2005). Interestingly, 254 pro-
tein pairs among the 635 direct interactions are reportedly of
high confidence (Butland et al. 2005). On the other hand, our
method identified 446 direct and 8024 indirect interactions out
of the total 10,986 unique interactions determined by pull-down
assays using the His-tagged bait method (Arifuzzaman et al. 2006;
Table 2).

The overlap between our predictions and the experimental
studies is higher when we consider indirect interactions. This
might be because one may identify proteins that interact with
bait directly, or indirectly while using pull-down assays. It is
therefore likely that the experimental techniques not only iden-
tify direct physical interactions, but also complexes involving

several proteins. Taking this into consid-
eration, we find that the overlap be-
tween our predicted set and the two ex-
perimental data sets is quite high
(∼80%).

A large number of new interactions
are predicted by our method. These in-
teractions could be physical, or might
represent functional linkages not neces-
sarily of physical character. For example,
it is known that LacI regulates expres-
sion of the lac operon. However, LacI
does not interact physically with any of
the three structural genes of the lac op-
eron. Such interactions between LacI
and the genes of lac operon cannot be
identified using pull-down methods.
Similarly, our predictions identified in-

teractions between RpoA and Sec A, B, D. These interactions
might also represent functional linkages between these proteins.
As is well known, transcription and translation in prokaryotes are
coupled processes, and the Sec-dependent pathway is also
coupled to the translation process. Thus, proteins of the tran-
scription machinery might be functionally linked to the Sec A, B,
and D proteins. These examples suggest that the present method
not only predicts physical interactions but also provides insights
into regulatory and functional linkages.

Analysis of predicted protein–protein interaction network

Most of the real world networks are known to possess scale-free
topology (Barabasi and Albert 1999). The most important char-
acteristic of the scale-free networks is that the degree distribution
(distribution of number of links) follows the power law, that is,
p(k) ∼ ak��, where � < 3. The scale-free networks possess a small
number of nodes with a large number of links, whereas a large
number of nodes possess very few links (Barabasi and Bonabeau
2003). We analyzed the scale-free behavior of our predicted inter-
action network, which is described in the following discussion.

The degree distribution of the predicted network with 3798
nodes and 78,122 edges follows the power law with an average
number of links being 41 and the degree exponent of 1.26 (Fig.
3A). This indicates that the network possesses a high diversity of

Table 1. Prediction accuracy of protein–protein interactions using three different data
features: minimum distance between the pair of genes on any of the prokaryotic genomes,
phylogenetic profile using bit-score values, and the frequency of co-occurrence in operons

Sensitivity Specificity Accuracy (%)

Minimum distance 0.74 0.99 86.5
Frequency of co-occurrence in operons 0.68 1.0 84.0
Phylogenetic profile 0.73 0.95 84.0
Combination of the three methods

Minimum distance and frequency of co-occurrence
in operons 0.68 1.0 84.0

Minimum Distance & Phylogenetic Profile 0.79 1.0 89.5
Frequency of co-occurrence in operons and

phylogenetic profile 0.76 1.0 88.0
Combined minimum distance, phylogenetic profile,

and frequency of co-occurrence in operons 0.79 1.0 89.5

The accuracy of the prediction is defined as the average of sensitivity and specificity. The values
reported are averages of the respective values obtained from fivefold cross-validation.

Table 2. Comparison of predicted interactions with
high-throughput experimental data

Method EcoCyc
TAP-tagged

bait
His-tagged

bait Prediction

EcoCyc 1082 54 40 875 (954)
TAP-tagged bait 5418 174 635 (4513)
His-tagged bait 10,986 446 (8024)
Prediction 78,122

Two high-throughput experimental data sets that are available in the
literature, namely, that derived from His-tagged bait analysis (Arifuzza-
man et al. 2006) and that from TAP-tagged bait analysis (Butland et al.
2005). The interactions reported in these data sets and those in the
EcoCyc database (Keseler et al. 2005) were compared with our predic-
tions. The values quoted in the table are the interactions that are com-
mon to the two methods. The values in parentheses correspond to the
indirect interactions, that is, those mediated by neighbors, in the pre-
dicted network.
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node degree. Moreover, the node degree is similar to that ob-
tained by the two experimental methods: TAP-tagged bait-
associated proteins (1.24), and His-tagged bait-associated pro-
teins (1.41). A degree <2 implies that the total number of links
grows faster than the total number of nodes (Seyed-Allaei et al.
2005). Further analysis of the clustering coefficient, C(k), re-
vealed that the distribution of clustering coefficient also follows
the power law [C(k) ∼ k��], with modularity exponent
� = �1.94, suggesting that the low-degree nodes are more cohe-
sive than the high-degree nodes (Fig. 3B). This, in turn, illustrates
the disassortive nature of the E. coli interaction network, indicat-
ing that the high-degree nodes in general are not linked to the
other high-degree nodes.

The number of links (path length) required to connect each
node to every other node in the predicted network was deter-
mined, which is also referred to as the “small world property”
(Fig. 3C). The diameter of the predicted network, that is, the
longest graph distance between any two nodes, was found to be
11. This implies that the nodes are densely linked and thus pos-
sess small world properties. In other words, small metabolic per-
turbations might not affect the overall functioning of the
organism.

Hubs in protein interaction networks have been postulated
to represent essential genes in a genome (Jeong et al. 2001; Albert
2005). Indeed, we observed that the proteins like DNA polymer-
ase subunits (HolA and HolC) and the RNA polymerase subunits
(RpoA, RpoB, RpoC, and RpoZ) that are essential for survival
possess a degree >100. Further analysis revealed that >80% of the
known essential genes possess a degree >41 (Baba et al. 2006).
This is in accordance with the earlier observation that essential
genes are densely connected (Yu et al. 2004). The average number
of interactions for essential genes in our predicted network was
115 (Supplemental Fig. 1a).

Degree distribution of the essential genes showed that cer-
tain essential genes possess degrees as low as 2–3. As suggested by
Pržulj et al. (2004), lethal nodes are not always the highly con-
nected nodes in the network. Certain nodes are lethal because
their deletion disconnects the network into two subgraphs and
thereby disrupts the network structure. Such nodes have been
referred to as “articulation points.” Analysis of one of the low-
degree essential genes, dicA, supported this argument. DicA is a
prophage-based transcriptional regulator and regulates the ex-
pression of cell division inhibitor DicB. DicA has been predicted
to interact with the prophage integrase IntD and a DNA-binding
transcriptional activator, SdiA (Fig. 4). In our predicted network,
SdiA interacts with 35 proteins, whereas IntD interacts with Aas
(2-acyl-glycerophospho-ethanolamine acyltransferase). Aas, in
turn, interacts with 13 other proteins. The topology of the sub-
network clearly shows that although DicA possesses a low degree,
its elimination would disrupt the connection between SdiA and
Aas subgraphs. Intriguingly, the topology of the subnetwork sug-
gests that IntD would also behave similarly to DicA, yet IntD is
not known to be essential. The nonessentiality of IntD could be
attributed to the occurrence of several prophage integrase genes
in the E. coli genome, which might function analogously.

Another important correlation of our predicted network
with the available experimental data relates to the list of nones-
sential genes. Analysis of the degree distribution of 741 genes
identified to be nonessential by Posfai et al. (2006) interestingly
showed that the average number of interactions (〈k〉) for this set
of genes is only 18 (Supplemental Fig. 1b). The 〈k〉 for nonessen-
tial genes is very low compared to the same for the complete
network (〈k〉 = 41) or for the essential genes (〈k〉 = 115). This ob-
servation further supports the good agreement between the pre-
dicted interaction network and independently obtained experi-
mental data.

Figure 3. Topological features of the predicted protein–protein interaction network in E. coli K12. (A) The degree distribution clearly shows that the
network follows scale-free properties. (B) The distribution of the clustering coefficient shows that the network is not hierarchical. Both the axes represent
the respective logarithmic values. (C) Distribution of the shortest path between pairs of proteins in the predicted network. (D) The null network possesses
a Gaussian degree distribution as observed in the log–log plot.
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To further enhance confidence in our predicted network, a
null network was constructed by randomizing the edges in the
network to generate 78,122 interactions using the same number
of nodes. The degree distribution was analyzed for this network.
The random network possessed a Gaussian degree distribution
unlike the scale-free predicted network (Fig. 3D). Moreover, in
the random network, the average number of interactions (〈k〉) for
the essential genes was 40.8, and that for the nonessential genes
was 30.8. This suggests that the predicted network is biologically
relevant and provides useful information.

We further observed that ∼2120 proteins interact directly or
indirectly with the essential genes. The shortest path-length dis-
tribution of the essential gene network showed that a large num-
ber of nodes are connected to the essential genes by a path length
of 3 (Supplemental Fig. 1c). Similarly, the path-length distribu-
tion of the nonessential gene network showed that most proteins
interact with the nonessential genes through at least four nodes
(Supplemental Fig. 1d). The diameter for the essential gene net-
work was found to be 8, whereas for the nonessential gene net-
work it was 14. Thus, not only the degree distribution but also
the small world properties are able to distinguish between the
experimentally characterized essential and nonessential genes.

Functional analysis of predicted network

It is of great interest to analyze the protein–protein interactions
in the context of their functional categories. KEGG classifies all
the E. coli proteins in 19 different functional categories. We ob-
served that the important cellular pathways—transcription and
translation—possess the highest average degree of interaction in
all the networks (Fig. 5). Our predicted network also showed a
high average degree for replication and repair pathways. Inter-
estingly, all the metabolic pathways possessed smaller average

degrees. This appears to suggest that per-
turbations in transcription or translation
are more likely to affect the physiology
of the cells than perturbations in the
metabolic pathways. Interestingly,
Pržulj et al. (2004) have earlier observed
that in the yeast protein–protein inter-
action network, stress and defense and
transport pathways are less connected
than transcription and translation. It
was also observed that proteins involved
in cellular organization possess a low de-
gree but consist of the highest articula-
tion points. Encouragingly, a high aver-
age degree was observed for the cell wall
synthesis pathway in the predicted net-
work. Thus, the overall physiology of a
prokaryotic cell might be determined by
the processes involved in the mainte-
nance and expression of genetic infor-
mation and those in cell wall biosynthe-
sis, rather than those in the metabolic
processes.

An interesting analysis of the pre-
dicted protein–protein interaction net-
work pertains to the well-known thiore-
doxin system. The thioredoxin system
plays an important role in maintaining
the cellular environment in reduced

conditions and thereby enabling proper functioning of several
enzymes. Thioredoxin, although overexpressed during oxidative
stress, is essential for proper functioning of a large number of
proteins involved in the light-activated Calvin cycle and tran-
scription regulation (Arner and Holmgren 2000). E. coli K12 pos-
sesses two thioredoxins, TrxA and TrxC, that are reduced by
thioredoxin reductase, TrxB. In our predicted network, TrxA was
observed to interact with 33 proteins, TrxB with 47 proteins, and
TrxC with 12 proteins (Supplemental Fig. 2). Interestingly, out of
the total 85 proteins, 80 possess at least one cysteine residue.
Since the principal mechanism of the thioredoxin-mediated re-
dox reaction is via dithiol exchange, it appears that the 80 pro-
teins might indeed be natural substrates of the thioredoxins. Oc-
currence of the well-known physiological partners of thioredox-
ins such as ribonucleotide reductase (Rnr), alkyl hydroperoxide
reductase (AhpC), and chaperone protein (DnaK) suggest that
our predicted network of thioredoxins might be of high confi-
dence (Kumar et al. 2004). Apart from the known partners, we
also found proteins such as the predicted thioredoxin-domain-
containing protein YbbN, the predicted transferase with NAD(P)-
binding domain YbhK, and the predicted oxidoreductase YjjX to
interact with the thioredoxins. Thus, the predicted thioredoxin
subnetwork not only substantiates the known interactions but
also enables identification of possible additional pathways regu-
lated by the thioredoxin system.

Yet another observation from our predictions pertains to the
toxin–antitoxin system that helps bacteria maintain segrega-
tional stability and fight stress conditions. Several toxin–
antitoxin pairs have been identified in E. coli (Hayes 1998). In our
predicted network, all the toxin–antitoxin pairs (TA) have been
predicted as interacting partners. RelBE, one of the well-
characterized TA pairs, is known to alter gene expression levels
during amino acid and carbon source starvation. We observe that

Figure 4. DicA subnetwork. dicA is known to be an essential gene in E. coli. Intriguingly, we observed
that DicA has a degree of only 2. However, as is clear from the subgraph, deletion of DicA leads to
disconnected islands in the subnetworks, thereby offering an explanation to its essentiality.
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the identification of the glutamine transporter (GlnQ) and ri-
bose-5-phosphate isomerase (RpiB) as RelE-interacting partners is
not surprising (Supplemental Fig. 3a). Interestingly the Nickel
transporter subunit NikE and the transcription regulator of Man-
ganese transport protein MntH, MntR, were also predicted to
interact with RelE. This suggests that in addition to nutrient
stress, RelBE might play a role in overcoming heavy metal stress.
Furthermore, a few hypothetical proteins such as YnjB and YnjC,
which have been predicted to act as membrane transporters, also
occur in the RelBE subnetwork. In other words, the RelBE system
might enable cells to recover from a variety of different stresses.
This is in accordance with the fact that the RelBE locus tends to
protect cells from the detrimental effects of stress, rather than
being suicidal (Pedersen et al. 2002).

E. coli possesses two paralogs of the RelBE system, RelBEK12

and RelBESOS. RelBESOS, also known as YafQ/DinJ, possesses a
LexA-binding site in its promoter region and therefore gets acti-
vated during the SOS response elicited by DNA damage (Lewis et
al. 1994). The physiological role of YafQ/DinJ is not well charac-
terized. However, on the basis of predicted interacting partners,
we are able to propose that YafQ/DinJ might inhibit HsdR, an
endonuclease, thereby allowing perpetuation of the modified
DNA (Supplemental Fig. 3b). In addition to allowing DNA modi-
fication to combat the SOS response, YafQ is also predicted to
interact with the enzymes of tryptophan and glutamine biosyn-
thesis. Although the functional implications of this observation
are not clear, we propose that YafQ is involved in repression of
amino acid biosynthesis. This implies that YafQ/DinJ protect the
cell from DNA damage by allowing DNA modification and in-
hibiting protein synthesis.

The excellent correlation between our predicted protein in-
teraction network in E. coli K12 and a wide variety of experimen-
tal data suggests that this interaction network will be a useful
resource to understand the biology of E. coli. The network can be
used, for example, to identify functions of the genes that have
been annotated as hypothetical, or of function unknown. We
suggest that the cliques in the network, which include genes with
characterized functions and a few genes with unknown function,
will be able to assign the pathway in which such genes reside.
Another interesting feature that can be addressed using the in-
teraction network is to identify large multiprotein complexes by
the identification of cliques. Analysis of the modular nature of

our predicted E. coli interactome can
help in deciphering unknown functions
and pathways.

Methods
Completely sequenced genomes of 295
bacteria were downloaded from the
NCBI ftp site (ftp://ftp.ncbi.nih.gov/
genomes/Bacteria/). Bacteria with linear
genomes were not considered for the
analysis. A total of 266 bacteria genomes
remained after excluding the bacteria
with linear genomes (Supplemental
Table VII). The homologous sequences
of all the known open reading frames
(ORFs) of E. coli K-12 were searched us-
ing BLASTp against the 266 genomes
with e�04 as the cutoff value. Orthologs
of the E. coli genes were identified by bi-
directional best BLAST hit (Hirsh and

Fraser 2001). Wherever genome sequences of different bacterial
strains of the same species were available, we selected the one
that shares the maximum number of orthologs with E. coli K12 to
reduce the bias in phylogenetic profiles. Therefore, 124 genome
sequences belonging to different bacterial species were used for
generating the phylogenetic profiles and for determining the fre-
quency of co-occurrence of a gene pair (Supplemental Table VIII).

Phylogenetic profiles
Bit scores for all the open reading frames of E. coli were obtained
by BLAST against 124 genomes, and these were then used to
generate a profile across 124 genomes, which was doubly nor-
malized: (1) each bit score of a profile was divided by the maxi-
mum value of the bit score over all the genes; (2) the minimum
bit score of the E. coli ORFs among all its homologs in other
genomes was considered. In order to assess if a pair of genes were
coevolving, the Pearson correlation coefficient of their respective
phylogenetic profiles was calculated. The E. coli genome encodes
4237 proteins. A 4237 � 4237 symmetric matrix was con-
structed, where each of the matrix elements was represented by
the correlation coefficient thus calculated.

Frequency of co-occurrence in predicted operons
A total of 1113 operon sequences were downloaded from the
EcoCyc database (Keseler et al. 2005). Partially identified operons
and those with the alternative transcription termination were
excluded. Among the remaining 699 operons, there were 119
operons with at least one gene whose name was not present in
the gene coordinate file (NC_000913.ptt) of E. coli K12. After
mapping the remaining 580 operons to the E. coli K12 gene co-
ordinate file, there are 497 gene pairs in which the genes in a pair
belong to the same operon and the two are adjacent to each
other. Furthermore, there are 616 gene pairs in which the genes
in a pair were codirectionally transcribed, that is, were adjacent
to each other but belong to different transcription units. Inter-
genic distances between the genes in the former gene pairs were
taken as the positive data set (Supplemental Table IV), whereas
those in the latter were taken as the negative data set (Supple-
mental Table V). These data sets were then used to train a Support
Vector Machine for prediction of operons in all the 124 genomes.

The frequency of co-occurrence of all the pairs of proteins
(4237 � 4237) in the predicted operons across all the genomes
was assigned as a score to each of the protein pairs. Thus, each

Figure 5. Comparative analysis of average degree of interactions between proteins belonging to
different functional pathways in the experimental and the predicted interactomes. It is clear from the
distributions that transcription and translation processes exhibit the largest average degree.

Prediction of genome-wide functional linkages

Genome Research 533
www.genome.org



element in the symmetric matrix represents the frequency of
co-occurrence of genes i and j, within the predicted operons
across all the genomes.

Gene distance method
With 4237 genes in the E. coli genome, the distance between the
transcriptional start sites of each gene against the rest of the
genes (4236) was calculated by dividing the absolute value of the
distance (in nucleotide bases) by the total genome length. All the
genomes under consideration being circular, we calculated the
absolute value of distance in both clockwise and counterclock-
wise directions, and then considered the minimum of the two
values. These values were then scaled to 100.

Similarly, we calculated the distances between orthologs of
the genes in all the 266 genomes. The interaction score between
any two genes was taken as the minimum of the distances be-
tween the genes and their orthologs across all the 266 genomes.
The final matrix is once again 4237 � 4237 symmetric, and each
element in the matrix is the minimum of the distances between
the genes i and j in any of the 266 genomes.

Prediction of protein–protein interactions using the Support
Vector Machine
The 4237 � 4237 symmetric matrix generated by each of the
above methods was considered to represent all the possible pair-
wise interactions between the proteins. Each element of the ma-
trix represented the score of the interaction. These interaction
scores were used as different data features for the training of the
Support Vector Machine with the positive data and negative data
as described below.

Preparation of the positive and negative data set
The data on E. coli protein complexes and pathways were down-
loaded from the EcoCyc database (Keseler et al. 2005). Any two
proteins that are part of the same complex were considered to be
functionally interacting. The self-interactions between ho-
modimers in complexes were excluded.

The negative reference data set comprised those pairs of pro-
teins that are not colocalized in the same compartment in E. coli.
Thus, the periplasmic location of all the proteins was predicted
using SIGCLEAVE in EMBOSS (Sarachu and Colet 2005). The pro-
tein was considered as periplasmic if it contained at least one
predicted signal sequence within the 50 residues from the N ter-
minus. The top-scoring 40 proteins were considered to be
periplasmic. In all, 346 proteins did not possess any signal se-
quence throughout the entire polypeptide stretch, and therefore
were considered to be cytoplasmic. The accuracy of identifying
the signal sequence by SIGCLEAVE has been reported to be 75%–
80%, and therefore the sets of proteins chosen to be periplasmic
and cytoplasmic are likely to be of correct subcellular localization
(http://bioweb.pasteur.fr/docs/EMBOSS/sigcleave.html). Each
pair was unique to the two data sets.

Cross-validation for model selection and prediction accuracy
We used LibSvm to predict the protein–protein interactions
(Chih-Chung and Chih-Jen 2001). The software enables users to
define several parameters and allows a choice of inbuilt kernel
function including linear, Radial Basis Function (RBF), polyno-
mial, and sigmoid.

In fivefold cross-validation, the data set consisting of posi-
tives and negatives was randomly divided into five equal size
sets. Training and testing was carried out five times, using the
“svm-train” and “svm-predict” utility of the LibSvm software
package (Chih-Chung and Chih-Jen 2001). In each round of

cross-validation, four sets were used for training, and the remain-
ing set was used for testing. The RBF function was used for train-
ing, and the best cost and � were selected using the grid search
algorithm grid.py in the LibSvm software package. In each step of
testing, sensitivity and specificity values were calculated. The ac-
curacy of prediction was taken to be the average of sensitivity
and specificity, which were defined as follows:

Sensitivity = True Positives/(True Positives + False Negatives)

Specificity = True Negatives/(True Negatives + False Positives)

Among the five models that were generated, the model with the
highest accuracy was retained as the best model and was used for
further predictions on a genome-wide scale.

Analysis of network attributes
A variety of graph-theoretic statistics, such as the degree distri-
bution, clustering coefficient, and characteristic path length and
diameter were analyzed. Locally written Perl scripts were used to
analyze the degree distribution and clustering coefficient. Path
length was analyzed using Cytoscape2.2 (Shannon et al. 2003).
The subnetwork graphs for illustrations were generated using
VISANT (Hu et al. 2005).
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