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Abstract

Background: Ever since its discovery the mycobacterial proline-proline-glutamic acid (PPE) family of proteins has generated
a huge amount of interest. Understanding the role of these proteins in the pathogenesis of Mycobacterium tuberculosis
(Mtb) is important. We have demonstrated earlier that the PPE18 protein of Mtb induces IL-10 production in macrophages
with subsequent downregulation of pro-inflammatory cytokines like IL-12 and TNF-a and favors a T-helper (Th) 2-type of
immune response.

Methodology/Principal Findings: Using a ppe18 genetic knock-out Mtb strain, we have now carried out infection studies in
mice to understand the role of PPE18 in Mtb virulence. The studies reveal that lack of PPE18 leads to attenuation of Mtb
in vivo. Mice infected with the ppe18 deleted strain have reduced infection burden in lung, liver and spleen and have better
survival rates compared to mice infected with the wild-type Mtb strain.

Conclusions/Significance: Taken together our data suggest that PPE18 could be a crucial virulence factor for intracellular
survival of Mtb.
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Introduction

Tuberculosis (TB), both pulmonary and extrapulmonary, is a

major global health concern. According to the World Health

Organization, 1.3 million people died of tuberculosis in 2008 and

34% of the victims were from South-East Asia. Also, one third of

the world population is infected with Mtb asymptomatically. TB

also accounts for 32% of deaths among AIDS afflicted individuals

[1]. Mtb is a highly successful pathogen. It has developed several

efficient strategies to survive and replicate in the macrophage, its

primary host cell [2]. These strategies include prevention of fusion

of phagosome and lysosome, deterrence of phagosome acidifica-

tion, expression of virulence proteins, protection from reactive

oxygen species (ROS), inhibition of protective cytokines like

interleukin (IL)-12, tumor necrosis factor (TNF)-a, evasion of

antigen presentation [3–6] and inhibition of apoptosis [7]. Mtb

turns down the T helper (Th) 1-type immune response which is

beneficial to the host and up-regulates Th2-type cytokines which

are anti-inflammatory and helpful for its survival [8]. The bacilli

with the help of these mechanisms live inside a human host,

sometimes for years together. Some of these mechanisms are well

understood while others remain to be comprehended. Under-

standing the host-pathogen interactions during Mtb infection will

help immensely in combating the menace of tuberculosis

worldwide.

The acid rich proline-glutamic acid (PE)/PPE family of proteins

is exclusive to mycobacteria. Unraveling of the Mtb genome

revealed that 10% of its coding ability is devoted to the PE and

PPE families, comprising of 99 and 68 members respectively

[9,10]. There is a gradual expansion of PE/PPE proteins from

non-pathogenic to pathogenic mycobacteria [11]. PE and PPE

family members are characterized by the presence of conserved

proline-glutamic acid or proline-proline-glutamic acid motifs of

110 and 180 amino acids respectively at the N-terminal region

[9,12]. The C-terminal region is found to be highly variable [13].

Depending upon the presence of characteristic repeats, the PE and

PPE families can be divided into subfamilies [11]. The PE_PGRS

and PPE_MPTR subfamilies have long stretches of GC rich

repeats which are believed to be the hotspots for recombination

events and other mutations. This leads to a great deal of sequence

variation and polymorphism in these proteins [14]. There is also

speculation that this high variability may contribute to the

antigenic variation that helps the pathogen to evade host

protective immune responses [15]. Not much information is
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available about the exact patho-physiological role of PE/PPE

proteins. However, there is evidence to suggest that they are up-

regulated during stress conditions and may hence facilitate

bacterial survival during infection [16,17]. Also, it has been found

that PE/PPE proteins modulate macrophage protective functions,

cytokine secretion, apoptosis and necrosis of host cells [16,18–20].

PPE18 (Rv1196), also known as Mtb39a, a member of the PPE

family, is expressed more in Mtb as compared to Mycobacterium

bovis [21]. Previous work by us documents that PPE18 binds to the

toll like receptor (TLR) 2 on macrophages, and via activation of

the p38 mitogen activated protein kinase (MAPK) pathway, it up-

regulates IL-10 cytokine production. Also, its interaction with

TLR2 leads to phosphorylation of the suppressor of cytokine

signaling (SOCS) 3 protein which then physically interacts with

the IkBa-nuclear factor (NF)-kB/c-rel complex. This interaction

prevents the nuclear translocation of p50 and p65 NF-kB and c-rel

transcription factors. As a consequence, there is a downregulation

of transcription of NF-kB-regulated genes like IL-12 and TNF-a.

Thus, PPE18 was found to selectively downregulate the proin-

flammatory and Th1-type immune response [5,22]. At the same

time, it increases secretion of IL-10 [22] which favors a Th2-type

response. Also, our previous work reveals that macrophages

infected with Mtb strain lacking PPE18 produce less IL-10 and

more IL-12 p40 compared to those infected with wild-type Mtb

strain. Interestingly, PPE18 was shown to skew the anti-PPD Th1

response towards the Th2-type in T cells isolated from PBMCs

from BCG vaccinated individuals [22]. To understand the role of

PPE18 in Mtb virulence in vivo, in the present study, the ppe18

knock-out (KO) strain was used in a murine model of Mtb

infection. Our studies revealed that mice infected with ppe18 KO

bacteria had lower bacterial load, less tissue pathology and

improved survival rates compared to mice infected with wild-type

(WT) bacteria. These data reveal that PPE18 probably plays an

important role in the survival and multiplication of Mtb bacilli

during infection.

Materials and Methods

Bacterial Strains
The Mtb ppe18 knock-out (KO) strain (ppe18 null mutant;

mutant ID 1440, MT1234) and its corresponding wild-type (WT)

strain (CDC1551) were obtained from Colorado State University

(as part of National Institutes of Health National Institutes of

Health NIAID Contract No. HHSN266200400091C entitled,

‘‘Tuberculosis Vaccine Testing and Research Materials’’). The M.

tuberculosis strains were grown in Difco Middlebrook 7H9 broth

(BD Biosciences, Sparks, MD, USA) supplemented with 0.2%

glycerol (Sigma-Aldrich, St. Louis, MO), 0.5% Tween 80 (Sigma-

Aldrich), and 10% oleic acid albumin dextrose complex (OADC,

BD Biosciences) in a biosafety level 3 (BSL-3) facility at

International Centre for Genetic Engineering and Biotechnology

(ICGEB), New Delhi, India.

Mouse Infections
Four to six weeks old C57Bl/6 mice of either sex were kept in

individually ventilated cages in a BSL-3 animal house at ICGEB,

New Delhi. Animal experiments were conducted at the animal

house facility of ICGEB, New Delhi, India according to the

guidelines of the Institutional Animal Ethics Committee. Mice

were infected with 16108 of WT or ppe18 KO Mtb strain by

aerosol route using the Madison Aerosol Chamber (University of

Wisconsin, Madison, WI) pre-calibrated to deliver small inocula of

bacilli (delivering about 80–130 bacilli of both the strains per lung

of animal sacrificed at day one as assessed by killing two mice 24

hours after exposure to aerosol and plating the lungs homogenates

on nutrient 7H11 agar and counting CFU after a 21 days

incubation at 37uC).

Infection Burden in Organs
Bacterial loads in lung, liver, and spleen were evaluated at

different time points after aerosol infection with WT or ppe18 KO

Mtb to follow the course of infection. For this, lung, liver and

spleen were aseptically removed from euthanized animals from

each group. Organs were homogenized in sterile saline containing

0.05% Tween 80 (Sigma-Aldrich). Serial dilutions of homogenized

organs were plated on 7H11 plates supplemented with 10%

OADC (BD Biosciences). Plates were incubated at 37uC and

colonies were counted after 21 days.

Histopathology
Lung, liver and spleen of mice infected by aerosol route with

either WT or ppe18 KO Mtb strain were aseptically removed from

euthanized animals and were fixed in 10% formalin and then

embedded in paraffin wax. Sections were then stained with

hematoxylin and eosin (H&E) stain for visualizing mammalian

cells. Sections were visualized under an Olympus CX21 micro-

scope (Olympus, Japan). Also, microphotographs were taken using

an Olympus DP72 CCD camera attached to the microscope.

DP2-BSW software was used for image analysis.

Statistical Analysis
Data analysis was performed using the Student’s t test,

considering P values ,0.05 to be significant. Values are presented

as mean bacterial count 6 standard error of the mean (SEM) of 5

animals per group per time point [23,24].

Results

PPE18 Confers a Growth Advantage to Mtb in vivo in a
Mouse Model of Infection

To assess the role of PPE18 in growth of Mtb in vivo, C57Bl/6

mice were infected with either WT or ppe18 KO strains of Mtb via

the aerosol route and the bacterial burden was estimated in lung,

liver and spleen of infected animals at 3 different time points (3

weeks, 6 weeks and 9 weeks) after infection. The aerosol infection

deposited 80–130 colony forming units (CFUs) per lung (as

assessed by counting CFUs in two infected mice per Mtb strain at

day 1 post infection) Infection through aerosol deposits Mtb

directly into the lungs and hence considered to be closest to

physiological mode of infection. Lungs being the primary site of

infection showed maximum CFUs at all the time points examined

(Figure 1). In mouse model upon infection, bacteria are known to

disseminate from lungs to liver and spleen [25]. It has been shown

that in mice infected with a low dose of Mtb by aerosol route,

bacterial numbers increase steadily with time to reach a peak at

about 3 weeks and thereafter may decrease considerably [26,27]

when the host cell-mediated immune responses are high [25,28–

30]. Similarly, we also observed a steady rise in the bacterial load

in all the organs till 3 weeks after aerosol infection and then a

decrease at 6 weeks and 9 weeks post infection. Interestingly, we

found that the number of ppe18 KO bacteria remained signifi-

cantly less in all the organs at almost all the time points

investigated (Figure 1). In the lungs of ppe18 KO-infected mice,

the mean bacterial counts (6 SEM) were significantly lower at 3

weeks post infection as compared to those of infected with WT

Mtb strain and this trend continued to later time points also (6

weeks and 9 weeks) (Figure 1A). Similar observations were made in

liver (Figure 1B) as well as in spleen (Figure 1C). These data
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indicate that the ppe18 KO strain probably failed to multiply as

robustly as the wild-type strain during the acute phase of infection

in vivo. PPE18 has previously been reported to be non-essential for

bacterial growth in vitro [31]. Our results indicate that PPE18

probably plays a role in replication and survival of Mtb in vivo and

therefore, may be a candidate virulent factor.

Mice Infected with ppe18 KO Strain Show a Reduced
Degree of Inflammation and Tissue Damage as
Compared to mice Infected with WT Mtb Strain

Aerosol infection deposits Mtb directly in the lungs where their

numbers slowly increase reaching a peak at about 3 weeks post

infection. This is also the time when the influx of immune cells into

the lungs is very high [28–30]. From the lungs the infection

disseminates to liver and spleen. It has been reported that upon

initiation of infection, bacteria in the lungs are lodged in the

alveolar macrophages, myeloid dendritic cells (DCs) and neutro-

phils which form the first line of defense [25]. T cells first get

activated in the draining lymph node and then migrate to the

lungs about 14–21 days post infection [32]. In mice, the immune

cells (macrophages and lymphocytes) are not arranged in the form

of well defined granulomas that are observed in humans. It has

also been observed that the immune response in the mouse model

is often exaggerated and contributes to the aggravated tissue

pathology resulting in death of the host even though the bacterial

numbers are not significantly high [25]. Therefore, we examined

the tissue damage in lung, liver and spleen in mice infected with

WT and ppe18 KO Mtb strains in vivo by histopathological

analyses. The extent of inflammation and tissue damage due to

infection as seen in the hematoxylin and eosin (H&E) stained

sections of lung and liver from mice infected with WT Mtb was

found to be markedly pronounced (Figures 2 and 3, left panel)

than that observed in mice infected with the ppe18 KO Mtb

(Figures 2 and 3, right panel). The lungs of animals infected with

WT or ppe18 KO strains of Mtb became infiltrated with

lymphocytes and macrophages at later time points after aerosol

infection. However, the infiltration and lesions were more severe

in mice infected with WT Mtb. Mice infected with ppe18 KO had

more intact alveolar spaces while mice infected with WT Mtb

almost had none, especially at 21 and 60 weeks post infection

(Figure 2). The lesions and tissue damage observed in the WT

Mtb-infected animals were graded 4 (marked with 51–75% tissue

affected) and 5 (severe with 76–100% tissue affected) and that in

the ppe18 KO-infected animals were graded 3 (moderate with 26–

50% tissue affected), 60 weeks post infection (Figure 2). A similar

trend was observed in the liver. The lesions observed in liver were,

Figure 1. Infection burden in mice infected with wild-type (WT) or ppe18 knock-out (KO) Mtb strain. C57BL/6 mice were infected
aerogenically with a low dose (16108) of either WT or ppe18 KO strains of Mtb. At different time points post infection, mice were sacrificed and CFU
counts were measured in lung (A), liver (B) and spleen (C). Data are mean 6 SEM of results for five mice per group for each time point.
doi:10.1371/journal.pone.0052601.g001
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however, less severe compared to those in the lungs. Small foci of

lymphocytic infiltration began to appear 3 weeks post infection in

WT-infected mice (Figure 3). The foci were better observed at a

magnification of 100X (Figure S1). The lesions became more

numerous by 60 weeks post infection (Figure 3). Liver sections

from ppe18 KO-infected mice seemed normal at 3 and 21 weeks

post infection and this correlated well with low CFU counts in the

liver (Figure 1B), mild lymphocytic infiltration was observed in

livers of ppe18 KO-infected mice only at 60 weeks post infection

(Figure 3). Effect of infection was not observed in spleen of both

WT- and ppe18 KO Mtb infected mice sacrificed at 3 weeks.

Histiocytosis or accumulation of macrophages in spleen was

observed at 21 and 60 weeks post infection in mice infected with

WT Mtb strain (Figure 4), however, the spleen tissue structure of

ppe18 KO strain-infected mice appeared to be normal (Figure 4).

Our observations from the histological slides indicated that in

comparison to the WT, the ppe18 KO strain elicited a reduced and

delayed inflammatory response in lung, liver and spleen of the

infected mice.

Infection with ppe18 KO Strain of Mtb Exhibits Reduced
Tuberculosis Induced Fatality

To reckon the total effect of in vivo growth and inflammation,

survival of mice infected with WT and ppe18 KO strains of Mtb

was monitored over a prolonged period of time. No deaths were

registered in the group of mice infected with the ppe18 KO strain

during the entire study period of 60 weeks. However, in the group

of mice infected with the WT Mtb, survival rate had dropped to

25% 60 weeks post infection (Figure 5). Also, mice infected with

ppe18 KO strain visibly appeared healthier. The percentage

increase in the weight of mice infected with ppe18 KO strain 9

weeks after infection was 5562% compared to the 31.965%

increase in the weight of mice infected with the WT strain (Figure

S2).

Discussion

The virulence of Mtb is complicated and multifaceted. Earlier

in vitro studies by us had indicated that PPE18 might aid in

virulence of Mtb by favoring the non-protective anti-inflammatory

Th2-type response and downregulating the protective pro-

inflammatory and/or Th1-type immune response [5,22]. The

present infection studies in a mouse model have indeed revealed

that deletion of PPE18 reduces the capacity of Mtb to multiply

in vivo. Both in vitro [5,22] and in vivo studies thus point to the fact

that PPE18 probably plays an important role in the virulence of

Mtb.

It is documented that immunity to Mtb in host depends on

robust Th1-type T cell response while Th2-type response leads to

enhanced susceptibility to mycobacterial infection [33]. Among

the several factors that regulate T cell polarization and Th1/Th2

development, the cytokines produced by the activated macro-

phages have the most influential role [34,35]. IL-12 [36–39] and

TNF-a [40,41] cytokines are known to trigger the anti-mycobac-

terial protective Th1-type immune response [38,42,43]. In

contrast, IL-10 cytokine not only perturbs the Th1 response but

also polarizes the T-cell immune response towards the non-

protective Th2-type and promotes Mtb survival inside the host

[44–48]. IL-10 has been shown to be linked with the ability of Mtb

to evade immune responses and mediate long-term infections in

the lungs [49]. Thus, mycobacterial strategy at every step is likely

to perturb the macrophage IL-12/IL-10 balance to subsequently

establish a Th2-type response. This hypothesis is supported by the

observation that pathogenic Mtb bacteria have evolved mecha-

nisms to suppress IL-12 and TNF-a production [50–53]. On the

other hand, virulent clinical strains of Mtb are found to be

proficient at stimulating high levels of IL-10 and inducing

immunosuppression in the host [54,55]. Interestingly, IL-10

transgenic mice re-activate latent tuberculosis infection and

overproduction of IL-10 causes increase in susceptibility to

mycobacterial infection [56]. Also, in patients with active TB

infection, the anti-PPD Th1 T cell responses are found to be

downregulated [57,58]. All these findings indicate an important

role of the IL-12/TNF-a and IL-10 balance in the regulation of

Mtb infection and disease progression; however, the mechanisms

by which the bacilli influence these signaling pathways to favor

their long-term survival and persistence inside the host are not well

understood.

Previous work by us reveals that PPE18 is a TLR2 ligand and its

binding to TLR2 results in activation of p38 MAPK, which leads

to secretion of higher levels of IL-10 [22]. At the same time, this

interaction also inhibits LPS-mediated IL-12 p40 and TNF-a
induction involving the p38 MAPK-SOCS3-NF-kB/c-rel signal-

ing pathway [5]. Thus, it appears that PPE18 probably plays a key

role in regulating the Th1/Th2 cytokine balance, which in turn

can influence bacterial persistence and multiplication inside the

host [59,60]. We have also documented earlier that the anti-PPD

T cell response is skewed towards the Th2-type by PPE18 in T

cells isolated from PBMCs from the BCG-vaccinated individuals,

and an important role of IL-10 in the downregulation of anti-PPD

Th1 response by PPE18 [22]. Thus, how much of the PPE18-

induced modulation of the immune response could directly

contribute to Mtb virulence in vivo seemed an interesting and

logical issue to be looked at. In the present study, we observed that

absence of ppe18 in Mtb resulted in a marked decrease of virulence

with low bacterial counts and reduced pathology in the lung, liver

and spleen when compared with the WT strain in a murine model.

Also we observed absence of mortality in mice infected with ppe18

KO strain compared to mice infected with CDC1551 wild-type

strain. Thus we predict that deletion of ppe18 impairs the ability of

the bacilli to induce a favorable anti-inflammatory immune

environment. Although the precise mechanism of the reduced

virulence of ppe18 knock-out strain is unclear, this could be due to

the fact that in the absence of PPE18, probably a better protective

immune response (especially Th1) is generated which augurs well

for the host [61–63]. It is also possible that PPE18 targets other

immune effecter molecules that lie downstream of the SOCS3-NF-

kB signaling cascade that has previously been shown to be affected

by binding of PPE18 to TLR2 [5] to downregulate anti-

mycobacterial protective immune responses. The exact reason

for low numbers of ppe18 knock-out Mtb strain in vivo needs to be

further investigated.

The aerosol model of Mtb infection in mice fails to give rise to

the classical granulomas in the lungs that are typically observed in

people suffering from tuberculosis. The infected mice usually show

loose aggregates of macrophages and lymphocytes that infiltrate

into the lungs upon infection [64]. Such aggregates were also

observed in our studies. These clusters of immune cells were seen

to appear earlier in the lungs of mice infected with the WT Mtb

strain. On the other hand, we observed fewer CFUs in mice

infected with the ppe18 KO Mtb strain, that resulted in delayed

onset of lung, liver and spleen pathology as compared to the WT

Mtb strain. This is well reflected in the absence of mortality in

mice infected with ppe18 KO strain whereas mice infected with

WT Mtb strain failed to survive beyond 60 weeks. Within the

localized environment of the granulomas, the immune cells

regulate bacterial multiplication and thus control the spread of

infection within the lungs and to other organs [65]. Various studies
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have indicated that even though the bacterial replication slows

down after 3–4 weeks of infection, the infected mice might

eventually die as a result of organ damage caused by the bacteria

[29,66]. We observed that the number of WT bacteria after

aerosol infection increased at 3 weeks from day 1 and then

decreased when examined at 6 weeks and 9 weeks time point.

However, in these mice, we observed exacerbated lung as well as

liver and spleen pathology at later time points (21 weeks and 60

weeks) which was associated with increased mortality. The

decrease in CFU counts in WT-infected mice at later time points

Figure 2. Histopathology of lungs from mice infected with wild-type (WT) or ppe18 knock-out (KO) Mtb strain. Lung sections from mice
following infection with either WT (left panel) or ppe18 KO (right panel) strains of Mtb were stained with hematoxylin and eosin (H&E) stain at
different time points post infection. Photographs of representative sections from 2 mice visualized at 40X magnification are shown.
doi:10.1371/journal.pone.0052601.g002
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like 6 weeks and 9 weeks compared to 3 weeks time point post

infection as observed in our study could be due to induction of an

effective immune response, thereby keeping the intracellular

bacterial load down. However, at all the time points studied,

tissue pathology was found to be much less severe in mice infected

with ppe18 KO strain explaining the absence of mortality in these

animals.

Mycobacterial virulence factors are defined as the traits that

cause disease progression in host. The CFU load, histopathology

and survival of the host after bacterial infection determine the

degree of virulence. The growth of Mtb inside a host is an

important indicator of virulence. Thus, observed low CFU counts

of ppe18 KO Mtb strain in mice and longer survival of the mice

infected with ppe18 KO strain could possibly mean that PPE18 is a

virulence factor of Mtb. Correlations between reduced pathology

accompanied by improved survival of the host have been made

earlier in studies using Mtb strains deficient in mce operons [67]

and the serine/threonine kinase PknG [68]. In both these studies,

multiplication of the knock-out strains was found to be compro-

mised in vivo. Similarly, mice infected with DsigC mutant had CFU

counts in the lung homogenates one log unit lower than the wild-

type CDC1551 and DsigC complemented mutant groups at day

28 and this observation persisted up to day 120 [69]. DsigC

mutant-infected mice show milder lung pathology and remained

healthy and alive for an extended time in comparison to the

CDC1551 and DsigC complemented mutant groups [69].

Interestingly, DsigC mutant strain also proliferated poorly in

guinea pig models [69]. Similar results were also observed when

guinea pigs and mice were infected with Mtb DdosR mutant strain

[70] or with Mtb strain harboring several sigma factor mutants

Figure 3. Histopathology of livers from mice infected with wild-type (WT) or ppe18 knock-out (KO) Mtb strain. Liver sections from mice
infected with either WT (left panel) or ppe18 KO (right panel) strains of Mtb were stained with hematoxylin and eosin (H&E) at different time points
post infection. Photographs of representative sections from 2 mice visualized at 40X magnification are shown. Arrows indicate the sites of
lymphocytic infiltration.
doi:10.1371/journal.pone.0052601.g003
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[71]. All these observations indicate that poorer bacterial growth

and reduced lung pathology in animal models can contribute to

prolonged host survival upon infection with mutant Mtb strains

[27,67–75].

The PPE family comprises of 69 acid-rich members. PPE

proteins such as PPE44 (Rv2770c), Rv2608, Rv1168c, Rv2430c

etc have been found to elicit potent B and T cell responses [76–

79]. Interestingly, Rv0485, the transcriptional regulator of the

pe13/ppe18 pair has been shown to be a virulence factor in a

murine model of Mtb infection [17]. Our studies, however, focus

directly on the role of PPE18 in Mtb virulence. This study specially

gains relevance because PPE18 is a component of Mtb72f, a Mtb

subunit vaccine which is currently in clinical trials [80]. Therefore,

it becomes imperative to study and understand the function of

PPE18 in Mtb virulence. PPE18 is thought to be present on the

bacterial surface [22,81]. Results presented in this study highlight

the important role of PPE18 in replication and survival of Mtb

in vivo. Absence of PPE18 perhaps slows down the rate of bacterial

replication in vivo. Therefore, antibodies and other therapeutic

strategies that target the PPE18 protein might help in controlling

Mtb infection in a better way.

Figure 4. Histopathology of spleens from mice infected with wild-type (WT) or ppe18 knock-out (KO) Mtb strain. Spleen sections from
mice infected with either WT (left panel) or ppe18 KO (right panel) strains of Mtb were stained with hematoxylin and eosin (H&E) at different time
points post infection. Photographs of representative sections visualized at 200X magnification are shown. Arrows indicate the sites of macrophage
infiltration.
doi:10.1371/journal.pone.0052601.g004

Figure 5. Survival of mice infected with wild-type (WT) or ppe18
knock-out (KO) Mtb strain. Survival of C57BL/6 mice following a
low-dose aerosol infection with either WT or ppe18 KO strains of Mtb
was monitored for 420 days post infection. The starting number of mice
in each group was 8.
doi:10.1371/journal.pone.0052601.g005
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Supporting Information

Figure S1 Histopathology of liver of mice infected with either

wild-type (WT) or ppe18 KO M. tuberculosis strain at higher

magnification. H&E-stained liver sections from WT (left panel)

and ppe18 KO (right panel) strain infected mice were observed at

100X magnification. Arrows indicate the sites of lymphocytic

infiltration.

(TIF)

Figure S2 Effect of M. tuberculosis wild-type (WT) or ppe18

KO infection on weight of mice. Weight of mice was taken 9 weeks

after they were infected with either WT or ppe18 KO strains of M.

tuberculosis. The percentage increase in weight was calculated

with respect to the average weight of 4–6 weeks old uninfected

mice. Data shown is mean 6 SEM for a total of 12 mice.

(TIF)
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