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Drug development efforts against cancer are often hampered by the complex properties of signaling networks. Here we
combined the results of an RNAi screen targeting the cellular signaling machinery, with graph theoretical analysis to
extract the core modules that process both mitogenic and oncogenic signals to drive cell cycle progression. These modules
encapsulated mechanisms for coordinating seamless transition of cells through the individual cell cycle stages and, im-
portantly, were functionally conserved across different cancer cell types. Further analysis also enabled extraction of the
core signaling axes that progressively guide commitment of cells to the division cycle. Importantly, pharmacological
targeting of the least redundant nodes in these axes yielded a synergistic disruption of the cell cycle in a tissue-type-
independent manner. Thus, the core elements that regulate temporally distinct stages of the cell cycle provide attractive
targets for the development of multi-module-based chemotherapeutic strategies.

[Supplemental material is available for this article.]

Current approaches aimed at anti-cancer drug development pri-

marily focus on identifying those signaling intermediates where

mutations have led to constitutive activity in a given cancer. The

aim then is to develop inhibitors against these targets (Evan

and Vousden 2001; Vermeulen et al. 2003). The prevailing systems

view, however, describes the signaling machinery as being orga-

nized into a complex network (Barabasi and Oltvai 2004; Zhu et al.

2007) that exhibits a nonlinear response behavior (Alon 2007).

This implies that the effects of inhibiting an intermediate need not

necessarily be the inverse of that which is obtained upon its con-

stitutive activation. In this context, at least one factor influencing

the outcome would be the level of functional redundancy exhibited

by this intermediate (Tononi et al. 1999; Edelman and Gally 2001).

That is, although activation of mitogenic pathways may derive from

an oncogenic mutation in a given signaling intermediate, inhib-

ition of this intermediate may, however, have only a minimal effect

if its functional role is compensated for through contributions from

other intermediates.

The above possibility is especially relevant for cancer cells

where mutations in more than one signaling molecule are often

the norm (Vogelstein and Kinzler 2004). In other words, the greater

degree of plasticity associated with oncogenic pathway activation,

relative to its suppression, also indicates that the ideal targets for

pathway inhibition need not necessarily coincide with those that

are involved in its activation. Such increments to our understanding

of the complex properties of biological systems illuminate that drug

development efforts will be significantly aided by a better resolution

of the signaling circuitry that controls the cell cycle, as well as a

description of the least redundant nodes (i.e., functionally least re-

placeable nodes) that participate in this process.

Despite accumulation of information on mitogen-activated

signaling cascades, a clear picture of how they integrate to modu-

late the cell cycle program is, however, still lacking (Papin et al.

2005). Indeed, the current challenge is to develop approaches that

can distill the available information and provide a coherent view of

the core pathways involved (Papin et al. 2005; Del Sol et al. 2010).

In the present study, we combined the results of a siRNA screen

targeting the signaling machinery with graph theoretical analysis

to extract the core modules that processed mitogenic signal in the

context of the individual phases of the cell cycle. We demonstrate

that these modules, indeed, constitute functionally conserved

features of mitogen-dependent signaling networks, and that the

least redundant nodes present in them provided effective targets

for chemotherapy. Thus, in addition to providing new insights

into mechanisms regulating cell cycle progression, our results also

highlight that multi-module targeting—wherein the temporal di-

mensions of a biological process are also taken into account—may

provide a useful refinement to current drug development efforts.

Results

An RNAi screen targeting cellular kinases and phosphatases
identifies regulators of the cell cycle

To identify signaling molecules that regulate cell cycle progression,

we performed a siRNA screen against all known kinases (758 pro-

teins) and phosphatases (294 proteins) in cycling cells of the murine

B lymphoma cell line CH1. This cell line has been previously used as

a model system to study signaling events regulating the cell cycle

(Aflakian et al. 2009; Jamal et al. 2010). Changes in cell cycle phase

distribution at 72 h after siRNA transfection were monitored by flow

cytometry (Methods). Since our aim was to decipher processes reg-

ulating mitogen-dependent cell cycle progression, only those effects

that perturbed the cell cycle phases without significantly affecting

cell viability were considered. A primary screen followed by a vali-

dation exercise (Fig. 1A; Supplemental Experimental Procedures)
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Figure 1. (Legend on next page)
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identified 38 kinases and five phosphatases whose silencing yielded

significant effects (Supplemental Table S1). A microarray analysis

subsequently confirmed that the genes coding for all of these tar-

get proteins were, indeed, expressed in CH1 cells (Supplemental

Table S2; Aflakian et al. 2009). A subsequent analysis using the

Novoseek gene–disease relationship scores identified nearly half of

these target molecules to exhibit a strong association with either

one or more forms of cancer (Supplemental Fig. S3), thus empha-

sizing the functional relevance of the hits identified by the screen.

A hierarchical clustering analysis of the nature of the effect

caused by depletion of these proteins revealed that the most com-

mon one was that of a simultaneous increase in the pool size of cells

resident in the G1 and S phases (Fig. 1B). In addition, there were also

a significant number of cases in which siRNA treatment specifically

increased either the G1 (12), or the S (nine) phase populations,

whereas only a limited number of siRNAs had any detectable affect

on the G2 phase (Fig. 1B).

Silencing of signaling intermediates induces differential effects
on cell doubling times

Examination of the effects of target-specific depletion on cell pop-

ulation doubling times (PDTs) yielded a diverse spectrum ranging

from negligible to a marked reduction in the proliferation rate

(Fig. 1C). While the PDT of control cells (i.e., transfected with

nonsilencing siRNA) was 26 6 3 h, 16 of the 43 siRNAs tested pro-

duced a significant extension with PDTs of 30 h or more. The in-

dividual PDT values were then used to calculate the residence time

(RT) of cells in G1, S, and G2 phases under each of the knockdown

conditions (Supplemental Fig. S3; Supplemental Experimental Pro-

cedures), and these results are compared to the control value in

Figure 1D. It is evident that each siRNA pool caused specific per-

turbations in one or more of the individual phases of the cell cycle,

although the effects differed widely between the various knock-

downs. For example, the G1 phase RT varied from about twofold

lower (in five cases) to about twofold greater (in 22 cases) than that

in control cells (Fig. 1D). No significant effect was observed for the

remaining 16 siRNAs (Fig. 1D). A similar degree of variation was

also observed for the S phase, whereas the G2 phase was only sen-

sitive to 19 of the siRNAs tested, of which eight caused an increase

in its RT (Fig. 1D).

To simplify our subsequent analysis, we categorized the tar-

get-specific siRNAs solely on the basis of the phase-specific ex-

tensions in RT that they induced (Fig. 1D). That is, although in

some cases extension in RT of a given phase was compensated for

by shortening of another phase, the latter effect was not taken

into account. Accordingly, the largest group of siRNAs (15) corre-

sponded to those inducing an extension of both the G1 and the

S phases, whereas that of only the G1 phase was observed for an

additional group of 12 cases (Fig. 1D). Another set of nine siRNAs

specifically extended the S phase alone. Perturbations prolonging

the G2 phase were seen in response to four siRNAs, and the re-

maining three target-specific siRNAs affected either the S and G2

(two), or the G1 and G2 phases (Fig. 1D). These results are consis-

tent with the known biological roles of these target proteins in the

literature (Supplemental Table S3).

Since the role of mitogenic signals is to move cells through the

G1 phase and then ensure their entry into the S phase ( Jones and

Kazlauskas 2000; Sears and Nevins 2002), our subsequent analysis

concentrated on only those targets where depletion resulted in an

extension in RT of either specifically the G1, the S, or both of these

phases simultaneously. This latter group of targets was termed as

those extending RT of the ‘‘G1S phase,’’ and available literature

suggests that it likely represents a window extending from the later

stages of G1 to initiation of the S phase ( Jones and Kazlauskas 2000).

Defining the source and target relationships for phase-specific
regulation of the cell cycle

An examination of results from two previously reported genome-

wide screens performed in the human cell lines HeLa and U2OS

(Mukherji et al. 2006; Kittler et al. 2007) revealed that there was

a <5% overlap between them at the level of the signaling molecules

that were identified. Relative to this, the overlap between the sig-

naling molecules identified here and those in either of these two

previous reports was between 5% and 10%. This poor concordance

exemplifies the emerging limitations of RNAi-based screening ap-

proaches where—in addition to the preponderance of false neg-

atives—differences in cell type and the experimental conditions

used, also significantly influence the outcome (Goff 2008; Bushman

et al. 2009). It was, therefore, imperative to explore whether a fur-

ther interrogation of our results would yield more meaningful, and

consistent, insights into signal-mediated regulation of the cell cycle.

The trade-off between sensitivity and robustness constrains

the architecture of the signaling network into a bow tie—or

hourglass—structure, which represents the convergence of diverse

and redundant input processes onto a conserved core module or

set of proteins (Csete and Doyle 2004; Supper et al. 2009). Such

core elements function as the key regulators of plasticity in the

cellular response, by calibrating a range of output processes (Kitano

and Oda 2006; Del Sol et al. 2010). Thus, mitogen-activated sig-

naling networks also likely incorporate such conserved regulatory

elements that process input signals and translate them into the

output response of cell cycle progression. We next attempted to

reconstruct the network of pathways through which the effects of

the identified targets were likely enforced.

Consequently, we defined the hits identified by our siRNA

screen as ‘‘source nodes’’ (Fig. 2A, nodes in dark red) to indicate

Figure 1. Design of the siRNA screen and the cell cycle phase–specific effects of the identified targets. (A) Schematic of the strategy used to identify
genes involved in cell cycle regulation. The overall z-factor obtained for our screen was 0.56, confirming its high overall quality. Details of the design, assay
validation, and target verification are provided in the text, Supplemental Experimental Procedures, and Supplemental Figures S1 and S2. (B) The hier-
archical clustering of the siRNA hits according to the observed phenotype on cell cycle. The dendogram represents the various clusters of genes identified
by our screen for the observed cell cycle distribution pattern. This pattern is based on the normalized z-scores of each of the siRNA hits in the respective cell
cycle phases. (C ) The range of observed changes in proliferation rate. The population growth curves of CH1 cells obtained in response to transfection with
either nonsilencing siRNA (NORMAL), or with siRNA against each of the validated hits are plotted. Here, cells were plated at 48 h after siRNA transfection
(Day 0), and results are plotted in terms of the fold increase in cell number at the indicated time points. Values are the mean of three separate de-
terminations. The subset highlighted by the bracket indicates those target-specific siRNAs that produced a significant increase in the population doubling
times (P-value < 0.05, as indicated by the asterisk). (D) A further analysis wherein the results in panels B and C were combined to determine the effects of
siRNA-mediated target silencing on residence time (RT) of the individual cell cycle phases. Changes (D), relative to the corresponding values in GFP-
silenced cells, in PDT and RT of the individual phases are shown here as the mean (6SD, gray bar) of three experiments. Details of their calculation are
provided in Supplemental Figure S3.
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that these signaling proteins constitute sources for inducing per-

turbations in the cell cycle. Furthermore, since the effects of siRNA-

mediated depletion of each of these source proteins was likely to be

eventually enforced through modulations in activity of one or more

constituents of the core cell cycle regulatory machinery, we con-

sidered this latter group of proteins as target nodes (Fig. 2A, light red

nodes). The objective then was to trace the network of pathways

connecting the sources to the targets and search for any associated

topological features (shown as green nodes linked through dotted

edges) that may be central to the regulation of G1- and S-phase

progression. While highlighting regulatory pathways, we also anti-

cipated that this strategy would illuminate any other key regulators

that may have been missed by the screen.

Proteins whose depletion resulted in an extension in RTeither

of the G1, the S, or the G1S phases were labeled as source nodes

specific for the respective phases (Fig. 2B). This was then followed by

an attempt to define the putative end targets for each of these source

node groups, that is, those constituents of the core cell cycle ma-

chinery that directly influence progression of cells through the G1 or

the S phases (Murray 2004). Combining literature survey with

KEGG, Reactome, NCI, and INOH pathway databases (Kanehisa and

Goto 2000; Matthews et al. 2009; Schaefer et al. 2009) identified 74

such proteins, which could then be grouped either as G1- or S-phase-

specific ‘‘targets’’ based on their known functional roles. Supple-

mental Table S4 lists these targets, along with links that describe

evidence in support of their categorization. Due to the contiguous

nature of cell cycle progression, however, it was not possible to

distinguish G1S-specific targets from those involved either in the G1

or the S phases. Therefore, the list of G1- and S-phase targets were

combined together and taken as targets for the G1S phase.

In silico network construction and identification of important
intermediates using shortest path analysis

Our next goal was to map the network of pathways linking the

source and target nodes in each of the relevant phases. The approach

used is outlined in Figure 2C. As the first step, we consolidated the

mammalian protein–protein interactions (PPI) from BIND, IntAct,

HPRD, BioGRID, MINT, Reactome, and NetworKIN databases to

build an undirected high-confidence network consisting of 5200

Figure 2. A systems approach to the analysis of cell cycle regulation and the identification of phase-specific IMP nodes. (A) The rationale underlying the
examination of source to target subnetworks in order to identify key intermediate effectors of cell cycle perturbation. Here the sources denote the hits
identified by the siRNA, while the targets denote the key molecules involved directly in progression of cell cycle and growth. (B) The ‘‘source’’ charac-
terization of the hits obtained in the siRNA screen, based on the phase-specific effects obtained. The genes described here are the human orthologs of the
murine counterparts (see text). The flowchart in panel C provides a stepwise summary of the in silico methodologies used for eventual identification of the
phase-specific regulatory modules. STEP 1 describes the stages involved in delineation of the core network, whereas STEP 2 illustrates the subsequent
analysis of this core network to extract the phase-specific IMP node subnetworks. Finally, STEP 3 depicts the stages through which an analysis of the IMP
node subnetworks eventually yielded the phase-specific modules. These individual steps are described in detail in the Supplemental Experimental Pro-
cedures. (D) The IMP nodes eventually identified through this network analysis for regulation of the G1, S, and G1S phases.
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nodes and 12,000 interactions (or, edges) (see Supplemental Table S5;

Supplemental Materials). To identify those molecular intermediates

that were enriched in a cell cycle phase–specific manner (IMP

nodes), we next traced all possible shortest paths from each of the

classified phase-specific sources (G1, S, or G1S) (see Fig. 2B) to all of

the corresponding phase-specific targets described in Supplemen-

tal Table S4. Shortest paths were traced from each G1source to all

G1target, from each Ssource to all Starget, and also from all G1Ssource to all

G1Starget (STEP 2, Fig. 2C).

Counting the number of times an intermediate occurred in

the ensemble of shortest paths for each phase (Supplemental Table

S6), and calculating the corresponding

Z-scores, enabled short-listing of the high

scoring phase-specific IMP nodes; while

normalizing for differences in the number

of source and target nodes between the

different cell cycle phases (STEP 2, Fig. 2C;

Supplemental Table S6; Supplemental Ex-

perimental Procedures). Here, our inclusion

of a G1S phase ensured that any relevant

node that may potentially be involved in

regulating both the G1 and S phases was

not missed. This process identified 27, 22,

and 32 IMP nodes from the G1, S, and G1S

phase-specific shortest paths, respectively,

and these are listed in Figure 2D.

Delineation of IMP node-dependent
regulatory modules

While the IMP nodes identified repre-

sented molecule sets that were enriched

in pathways regulating the distinct cell

cycle phases, it was, however, important

to delineate the temporal/topological

regulatory features of mitogen-induced

progression from G1 to S. We first took the

IMP nodes from each cell cycle phase as

the seed nodes and extracted connected

subnetworks of two-path length cutoff

from the core network as described in

Supplemental Table S5 (STEP 3 of Fig. 2C).

The resulting G1 IMP node network was

composed of 145 nodes and 296 edges,

whereas the S IMP node network con-

tained 54 nodes and 85 edges, with 215

nodes and 495 edges describing the G1S

IMP node network (Fig. 3A–C). These

subnetworks likely encapsulate the spe-

cific elements responsible for regulating

the respective phases of the cell cycle.

To next delineate regulatory ele-

ments present in these IMP node net-

works, we adopted the approach outlined

in STEP 3 of Figure 2C. First, a survey of the

literature assisted in clarifying the nature

of the biochemical reaction represented

by each of the edges in the IMP node

subnetworks (compiled in Supplemental

Table S7). The resulting classification of

these edges into functional categories of

activation, inhibition (both directed), or

neutral (undirected) facilitated conversion of the individual phase-

specific IMP node subnetworks into mixed networks that consisted

of directed and undirected edges. Taking each of these, we then

probed for any embedded motifs that also included the respective

IMP nodes. Here, we used SNAVI (Ma’ayan et al. 2009), and Figure

3D lists the various types of motifs that could be identified and the

number of times that these occurred in each of the individual phase-

specific IMP node subnetworks. Integrating the phase-specific IMP

node networks and randomizing the edges while keeping the degree

distribution constant over a hundred iterations led to a marked re-

duction in the number of motifs involving directed edges (i.e., ex-

Figure 3. Extraction of phase-specific subnetworks and their constituent regulatory motifs. (A–C ) The
phase-specific IMP node subnetworks extracted from our cell cycle core network for G1, S, and G1S
phase regulation. The IMP nodes are defined in red, while the blue nodes denote the intermediate node
linking any two or more IMP nodes. (D) A compilation of the different functional motifs identified in each
of the phases, along with a brief description of their biological implications. In addition, a typical to-
pological representation of each kind of motif is also shown. Here both three- and four-node motifs in
the FFL categories have been grouped together for the sake of convenience. (E ) Comparison of the
number of different motifs obtained for the integrated IMP node network (Real) versus that in a hundred
randomized networks (Random, values given as mean 6 SD). In these randomizations both the nodes
and the number of links were kept at a constant. The statistical significance of the difference in numbers
between the Real and Random cases is indicated by the corresponding Z-scores, which were calculated
as (<Real> � <Random>)/SD). Here NS indicates that there was no significant change in the case of
scaffolds. This is not surprising given that scaffolds are composed of undirected edges.
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cluding the scaffolds) (Fig. 3E). This confirmed that the phase-spe-

cific motifs identified were, indeed, statistically significant. Fur-

thermore, our identification that the relative enrichment of signal-

dependent regulatory motifs follows the order of G1S > G1 > S is

consistent with fact that the G1/S checkpoint represents the step

that is most tightly regulated by growth factor-mediated signaling

(Zetterberg et al. 1995; Sears and Nevins 2002).

Extracting cell cycle regulatory modules and the identification
of vulnerable nodes

Motifs in a network do not function in isolation but, rather, integrate

with one another to form discrete clusters (Dobrin et al. 2004). In our

case, such motif clusters can be considered to represent the core units

that process mitogenic signals to drive the cell cycle. Therefore, we

merged all motifs detected in the G1-specific IMP node network to

generate the G1-phase motif cluster. Similarly, motifs present in the

G1S- or the S-specific IMP node networks were also independently

merged to generate motif clusters defining the regulation of corre-

sponding phases. Importantly, these motif clusters exhibited a high

degree of edge density when compared with random subnetworks

extracted from IMP node networks (see Supplemental Materials).

Thus, these phase-specific motif clusters likely define regulatory

modules that specifically function during the cell cycle phases from

which they were derived. A compilation of the nodes present in

these modules, along with a classification of the functional groups to

which they belong, is provided in Supplemental Table S8.

Having extracted the cell cycle phase–specific regulatory

modules, we next sought to identify those constituent nodes that

were most critical for their functioning. For this we used the cen-

trality measures of ‘‘stress’’ and ‘‘betweenness.’’ Stress and between-

ness represent complementary indices that together describe the

functional importance of a node in a regulatory module (Newman

2005; Manimaran et al. 2009). We calculated the stress and be-

tweenness measures for each node in each phase-specific module,

and the resulting plot of these values for the G1- and G1S-specific

modules is shown in Figure 4A. Here, as expected, the S-specific

module was composed of only a few nodes (see Supplemental Table

S8), with just two giving any measurable value for stress and be-

tweenness. The modules for the G1, G1S, and S phases are shown in

Figures 4B–D, where the nodes are color-coded according to their

stress and betweenness values. The larger the size of the node, the

higher is the respective value of stress, whereas the betweenness

value is indicated by the shade of the color for that node.

We next segregated the functionally most significant nodes as

those with stress and betweenness values that were both greater

than 2.5-fold that of the mean for all nodes in the corresponding

module (Supplemental Experimental Procedures; Fig. 4A). The

composition of the resulting shortlist was then compared across

the individual phases. Intriguingly, the high-stress and high-be-

tweenness nodes identified for the G1, G1S, and S windows of the

cell cycle did not constitute distinct sets of molecules. Rather, the

group of vulnerable nodes identified for a given window overlapped

significantly with that for the adjacent window. For example, while

PTK2B was exclusively present in the G1 module ESR1, SRC, and

GRB2 commonly occurred as high-stress and high-betweenness

nodes in both G1 and G1S modules (Fig. 4A). Interestingly, although

AKT1 and E2F1 were also present in both modules (Supplemental

Table S8), these proteins exhibited properties of high stress and

betweenness only in the context of the G1 module (see Fig. 4A–C).

The nodes exclusively present in the G1S module were ABL1, JUN,

BRCA1, EP300, and RB1 (Fig. 4A). In the S module, only CCNA2 and

RBL1 showed functional nonredundancy (i.e., high stress and be-

tweenness) (Fig. 4D). The observed overlap in structure between

modules describing the adjacent windows of the cell cycle is con-

sistent with the fact that individual stages of this process do not

represent discrete events, but rather reflect windows that capture

temporally defined stages of a contiguously evolving biochemical

cascade.

Interestingly the majority of the G1-unique nodes represented

signaling molecules, whereas nodes specific for the G1S IMP node

network were distributed between signaling molecules, transcrip-

tion regulators, and proteins involved in DNA replication (Supple-

mental Table S8). The nodes enriched in the S-phase network in-

cluded CDK2 and CCNA2, which form a complex that drives cells

through the S phase (Arias and Walter 2007). Other such enriched

nodes included here were the damage repair protein BRCA1, the

DNA replication factor RIS2, and RBL1—a key regulator of entry into

cell division (Harper and Elledge 2007). Figure 4E summarizes the

distinct classes of biochemical activities described by each of the

IMP node subnetworks in the form of a heat map. The observed

layering of the initial activation of signaling events (G1 and G1S)

over the overlapping phase involving the induction of transcrip-

tional processes (G1S), and subsequent recruitment of the DNA

replication machinery (G1S and S) accurately recapitulates the broad

sequence of events that govern cell cycle progression.

These collective results, therefore, substantiate the informa-

tion-rich nature of the IMP node modules shown in Figure 4. They

also support that these modules together capture the dynamic

transitions in biochemical activities that enforce commitment of

cells to the division cycle.

Verifying phase specificity of vulnerable nodes

To further validate relevance of the phase-specific modules, we

experimentally verified both the selection of high-stress, high-be-

tweenness nodes and the characterization of their phase specificity.

We first compared the effects obtained upon perturbation either of

AKT or ABL. Our IMP node modules had suggested that the func-

tional significance of AKT1 was restricted to the G1-specific module,

whereas ABL1 was specific to the G1S module. Therefore, we treated

CH1 cells with pharmacological agents that either inhibited AKT

phosphorylation (LY294002) or ABL activity (imatinib mesylate).

The concentration of both inhibitors was adjusted such that a sim-

ilar PDT was obtained in both cases, thereby enabling a direct

comparison between the RT of the individual phases. Inhibition of

AKTresulted in a specific extension of the G1 phase, with a marginal

reduction in RT of the S phase of the cycle (Fig. 5A). In contrast, the

increased PDT obtained upon ABL inhibition involved contribu-

tions from both the G1 and S phases (Fig. 5A). These results therefore

verify the distinctions in phase specificity that were earlier suggested

for these two nodes, on the basis of centrality index estimations.

We also tested the effects of perturbing the remaining high-

stress, high-betweenness nodes that were identified (Fig. 5B). As

earlier discussed, the large majority of high-stress, high-between-

ness nodes identified were those that were either unique to G1S or

shared between the G1 and G1S modules. Consistent with this,

perturbation at any of these nodes resulted in a simultaneous in-

crease in RTof both the G1 and the S phase (Fig. 5B). However, RTof

the G2 phase was unaffected. Furthermore, in line with our iden-

tification of this protein as a G1-specific regulatory factor, silencing

of PTK2B led to a biased extension of the G1 phase (Fig. 5B). The

only discrepant result obtained was for E2F1, whose silencing

perturbed both the G1 and S phases, although this protein was
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Figure 4. Delineating phase-specific regulatory modules and defining the vulnerable nodes. (A) Summary of the results of our analysis of centrality
measures of the nodes in each of the phase-specific regulatory modules. This is depicted as a Stress-versus-Betweenness plot for all of the molecules in the
G1 and G1S cell cycle modules. Only those nodes that are above the cutoff of 2.5 times that of the mean value (indicated by the dotted line; see text) are
identified here. (B–D) The IMP node-based regulatory modules obtained for each of the individual phases. These represent phase-specific modules
extracted by merging the motifs identified for the G1, G1S and S phases, respectively. The nodes are color-coded according to their betweenness centrality
measure. The size of the nodes represents the stress parameter, where the size of the nodes increases with increasing stress value. The gradation of the
betweenness values is defined by the color bar. (E ) The stage-dependent modulation in biochemical activities of the core cell cycle regulatory network
spanning from early G1 to completion of the S phase. This is presented as a heat map that defines the percent contribution of signaling, transcription
regulatory, DNA replicative, and cell cycle regulatory molecules, in each of the indicated windows.
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Figure 5. Vulnerable nodes provide targets for synergistic disruption of the cell cycle. (A) The effects of inhibition of either AKT or ABL on RTs of the
individual phases. The increase in RT (DRT) of a given phase, relative to untreated cells, is expressed as a ratio of the corresponding increase—again relative
to untreated cells—in PDT (DPDT). Here, LY294002 and imatinib mesylate were used at concentrations that were half of their respective IC50 values, and
the increase in PDT obtained over that of untreated cells was 3 h. The effects of perturbation of the remaining high-stress, high-betweenness nodes
identified in A are similarly shown in B. With the exception of SRC, where PP1a was used for inhibition, perturbation was achieved through siRNA-mediated
depletion in all cases. Accordingly, the control cells used for the purposes of comparison were those treated with nonsilencing (i.e., GFP-specific) siRNA. The
results for GRB2 and EP300 silencing are not included because high levels (>80%) of cell death were obtained in these cases. Values in both panels are the mean
(6SD) of three independent experiments. No significant effect on RT of the G2 phase was noted in any of the cases. See also Supplemental Figure S4. (C ) The
dose-response profile for apoptosis in CH1 cells treated with pharmacological inhibitors of the indicated kinases. Doses for each inhibitor used were in multiples
of their corresponding IC50 values as noted. Values (mean 6 SD of three experiments) are expressed as the percent of apoptotic cells obtained 72 h later, after
normalizing for spontaneous apoptosis. (D) The bar graph shows the corresponding accumulation of CH1 cells in the G1 phase obtained at 18 h with the 5 3

IC50 concentration of inhibitors. Values (mean 6 SD of three experiments) are expressed as the increase in percent of the G1 population, over that in untreated
cells. (E ) The target kinases examined, their phase specificity, the pharmacological inhibitors used for inhibition of these kinases, and the corresponding IC50

values of these inhibitors. (F ) CH1 cells were treated with inhibitors against the indicated kinases (or kinase combinations), and the consequent effect on cellular
apoptosis was determined 48 h later. The concentration of the relevant inhibitor used was fivefold greater than its corresponding IC50 value in all cases, and
results are the mean (6SD) of three experiments. For panels C, D, and F, cells were treated with a single addition of the inhibitor or inhibitor combination.
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characterized as a node whose vulnerability was restricted to the G1

phase (Fig. 4A). This, however, may not be surprising given that the

downstream products of E2F-dependent transcriptional regulation

(e.g., cyclins A, B, and E) drive both the later stages of G1, as well as

the S phase of the cycle.

Finally, with the exception of CDK5, silencing of nodes with

low values for stress and betweenness (i.e., <1.5-fold of the mean

value) had no significant effect on phase-specific RTs. Although

CDK5 is suspected to play a role in cell cycle regulation, its properties

and function have been less explored (Dhavan and Tsai 2001). This

may account for the lesser number of associations known for CDK5

and, thereby, the resulting low values for stress and betweenness.

Thus, the results in Figure 5, A and B, provide experimental support

for the functional description of nodes, on the basis of centrality

indices, from the corresponding regulatory modules. However, they

also underscore the possibility that some additional critical nodes

may have been missed due either to insufficient information or

noise in the curated PPI databases.

High-stress, high-betweenness nodes represent vulnerable
constituents of phase-specific regulatory modules

The identification of critical nodes on the basis of centrality mea-

sures also implied that these were the functionally least redundant,

or most vulnerable, nodes within the respective cell cycle phase–

specific modules. Consequently, inactivation of one or more of

these nodes should then exert a profound influence on the cell cy-

cle. Consistent with this, treatment of CH1 cells with an inhibitor of

either AKT1 activation or that of ABL1 activity resulted in a dose-

dependent increase in the frequency of apoptotic cells (Fig. 5C).

Importantly, this apoptotic response was preceded by an accumu-

lation of cells in the G1 phase (Fig. 5D), confirming that cell death

derived from an arrest in the cycle. Here, for the purposes of com-

parison, we also examined the effects of inhibition of five repre-

sentative target proteins that had been identified by our siRNA

screen (Fig. 1). Of these, two (CHEK1 and FGFR2) represented G1-

specific source nodes, and the remaining three (TRPM7, PRKAR1A,

and MET) were G1S source nodes (see Fig. 2B). Whereas inhibitors

of CHEK1 and TRPM7 were significantly less potent than that of

AKT1 and ABL1, only marginal effects were obtained upon either

PRKAR1A, FGFR2, or MET inhibition (Fig. 5C). The inhibitors used

in these experiments, along with the IC50 values for their respective

targets, are listed in Figure 5E.

Our interpretation that the vulnerable character of AKT1 and

ABL1 emerged in temporally distinct windows of the cell cycle

regulatory module also implied that simultaneous inhibition of

both AKT1 and ABL1 should produce a cooperative effect on cell

cycle arrest, and the consequent apoptosis. This expectation was

indeed borne out in a subsequent experiment (Fig. 5F), and the

Loewe Combination Index (CI) obtained was 0.56 6 0.08. Here,

a CI of <1 is indicative of a synergistic response (Chou and Talalay

1981). In contrast, apoptosis induction by combinations of in-

hibitors of either CHEK1 or FGFR2 (G1-specific source nodes) with

that of TRPM7, PRKAR1A, or MET (G1S-specific source nodes) was

poor (Fig. 5F). Thus, the cumulative results in Figure 5, C and F,

confirm that both AKT and ABL exhibit a degree of vulnerability

that is significantly greater than at least some of the targets iden-

tified in our siRNA screen. This, however, does not rule out the

possibility that there may be other combinations not tested in this

study, which may also be effective. Furthermore, the cooperative

effects of combined inhibition observed also support our inferred

distinction in phase-specific involvement (G1 vs. G1S) of at least

two of the nodes (AKT1 and ABL1) identified on the basis of cen-

trality indices.

IMP node modules define the signaling axes that govern G1

and G1S windows of the cell cycle

The extraction of the G1 and G1S IMP node modules also helped to

resolve the nature of receptor-proximal signals that govern com-

mitment of cells to the division cycle. In the G1 IMP node module,

four molecules likely represent key constituents of the signaling

cascade that governs the early G1. While AKT1 and PTK2B play

a more specific role in this process, SRC and the adaptor molecule

GRB2 represent the least redundant constituents of both G1 and

G1S modules (Fig. 4). SRC likely serves as a common sensor that

bridges AKT1 activation with both RTKs and mitogenic GPCRs.

Whereas the SRC/GRB2 complex represents a constituent of the

signalosome complex recruited by RTKs (Luttrell and Luttrell

2004), PTK2B mediates SRC activation by GPCRs (Litvak et al.

2000). This may then explain earlier observations that distinct

mitogenic signals activate a common signaling cascade in the early

G1 response ( Jones and Kazlauskas 2001).

ABL1 was the unique kinase present as a high-stress, high-

betweenness node in the G1S IMP node network (Fig. 4). While its

inferred functional significance was experimentally verified (Fig.

5A), earlier studies have also demonstrated that depletion in levels

of ABL1 significantly delays entry of cells into the S phase (Furstoss

et al. 2002). Similar to AKT1, activation of ABL1 is also primarily

dependent on the upstream SRC, which occurs both through direct

and indirect mechanisms (Plattner et al. 1999; Sirvent et al. 2008).

Thus, the early G1 is likely regulated through the complement of

pathways initiated by the SRC–AKT1 signaling axis. Continuance

through late G1, and then entry into the S phase, however, appears

to be contingent on a switch in this axis where ABL1 now replaces

AKT1 as the nonredundant substrate of SRC (see Fig. 6, inset).

IMP node modules capture the network of core pathways
that mediate commitment of cells to the division cycle

To translate our delineation of the distinct receptor-proximal sig-

nals into a more coherent view of G1 and G1S phase regulation, we

merged the corresponding IMP node modules and extracted the

motifs incorporating the combined list of high-stress, high-between-

ness nodes. By then enriching the resulting links with information

from the literature, we transformed these into the pathway map

shown in Figure 6. It is evident that this map represents a synopsis of

the multiplicity of biochemical events that cumulatively drive com-

mitment of cells to the division cycle. Importantly, it also elaborates

the individual modes of functioning of the G1- and G1S-specific sig-

naling cascades, as well as the links between them that coordinate

their respective activities.

The analysis reiterates that AKT1-dependent pathways, in-

deed, initiate cell cycle progression, by a concomitant inhibition of

pro-apoptotic pathways being coordinated with mechanisms reg-

ulating cell growth and proliferation (Fig. 6). Similarly, this figure

also rationalizes the key role ascribed to ABL1 in regulation of late

G1 and the subsequent G1/S transition. As shown, pathways ema-

nating from the cytoplasmic pool of ABL1 influence both cell cycle

progression and also suppress pro-apoptotic mechanisms (Fig. 6). A

prominent downstream consequence of cytoplasmic ABL1 activa-

tion is the enhancement in levels of cellular MYC (Boureux et al.

2005), the central regulator that links external signals to the cell

cycle machinery (Obaya et al. 1999). Importantly, the cell cycle
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Figure 6. Network of core pathways that mediate commitment of cells to the division cycle. In the pathway model, the nodes in red are proteins that
are present in the G1 and/or G1S modules. Nodes present in green are derived from the literature (they include intermediates or effectors of cellular
processes captured by our merged modules). The gray arrows depict interactions taken from the merged G1 and G1S modules. The blue arrows are links
added from the literature. The dotted orange boxes highlight cellular signaling pathways, and the dotted gray boxes group molecules involved in
regulating similar cellular processes. The dashed blue arrows indicate a known role of the source node in regulating the target node, derived from the
literature. AKT and PTK2B are G1-specific high-stress and betweenness nodes. SRC and GRB2 show high stress and betweenness in both modules. ABL and
JUN are present as high-stress betweenness nodes only in the G1S modules. A detailed description of the pathways captured is given in the Supplemental
Material.
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regulatory effects of MYC predominantly impinge on the later stages

of G1 and facilitate entry of cells into the S phase (Heikkila et al.

1987; Santoni-Rugiu et al. 2000).

Release of the nuclear-localized ABL1 from its inhibitory com-

plex with RB, which occurs as cells approach the G1/S boundary

(Welch and Wang 1995), also contributes toward regulating MYC

levels. The resulting convergence in signaling pathways, initiated

from both the cytoplasmic and nuclear pools of ABL1, may well

explain the long-standing question of how cellular MYC levels are

temporally modulated during cell cycle progression. While expres-

sion of this protein is induced in the early G1 phase, these levels are

further enhanced as cells prepare for S-phase entry ( Jones and

Kazlauskas 2001). Interestingly, consistent with our proposal, the

timing of this second phase of MYC enhancement coincides with

that of dissociation of the RB–ABL complex (Welch and Wang

1993). Synergism between the cytoplasmic and nuclear pools of ABL

may therefore provide a plausible mechanism that enables ABL1 to

replace AKT1 as the dominant signaling node in the G1S phase. This

effect is likely augmented by the fact that, subsequent to its release

from RB, a fraction of the nuclear ABL also partitions into the cy-

toplasmic compartment (di Bari et al. 2006). The resulting increase

in the pool of cytoplasmic ABL1 would then further intensify signals

generated from this subset of the kinase. Significantly, our proposal

that ABL1-dependent signaling is markedly amplified as cells ap-

proach the G1/S boundary is well supported by recent findings that

cellular levels of phosphorylated ABL1 peak at the G1S phase (Olsen

et al. 2010).

These cumulative results therefore rationalize our assignment

of key, but distinct, regulatory roles to AKT1 and ABL1 in the early

and late G1 stages, respectively. The MAP kinase pathway likely

serves as a common link that facilitates transition between these

two phases. Thus, in addition to delineating the key receptor-

proximal molecules, the results of our graph theoretical analysis

also facilitated synthesis of existing—albeit piecemeal—data into

a more unified scheme. This scheme captures the temporal evo-

lution of signaling cascades, as they propel cells through the mi-

togen-sensitive phase of the cycle.

A comparative analysis of independently conducted screens
yields a common IMP node network

Since cell cycle regulation is common to all dividing cells, it would

be reasonable to expect that the core modules identified here—and

the IMP node network from which they were extracted—would

represent a common feature of dividing cells, independent of their

tissue type of origin. To verify this, we also analyzed results of the

previously described RNAi-based screens for cell cycle regulators

that were performed in HeLa and U2OS cells (Mukherji et al. 2006;

Kittler et al. 2007). As noted earlier, the overlap in signaling mol-

ecules identified between these two screens was <5%.

From each of these reports, we separately shortlisted the sig-

naling molecules described as ‘‘hits’’ for either the G1 or S phase (the

G1S phase was not characterized in these studies), and categorized

them as G1 + S source nodes. We next repeated the analysis de-

scribed in Figure 2A, wherein shortest paths were traced from each

of these source nodes, to each of the G1 + S target nodes described

earlier. By then subtracting against the corresponding G2-specific

source to target network, we extracted the IMP nodes as described in

Figure 2C. A similar exercise was also performed with the results of

our present screen, which then allowed us to compare the resulting

IMP node list with that obtained from the HeLa and U2OS cell

screens. Remarkably, in spite of the nominal degree of concordance

at the level of the RNAi-defined hits, there was a >70% overlap in the

IMP nodes derived from the three screens (Supplemental Fig. S5).

Furthermore, when IMP node networks were independently gen-

erated from each of these three lists, the resulting overlap between

them was >92% (Supplemental Fig. S5).

To rule out any potential bias that our procedure for identi-

fying IMP nodes may only detect highly connected proteins, we

performed validation exercises at two levels. First, three different

random pairs of protein sources and targets were sampled from the

core PPI network, and IMP nodes were identified with respect to this

background. The resulting overlap between three random source-

target nodes (<30%) (Supplemental Fig. S5) was significantly less

than the 70% value observed in our comparison between IMP nodes

from the three studies. Second, to assess for any bias resulting from

the employment of a common set of target nodes, we sampled a

random set of sources from the core PPI network while retaining the

targets (i.e., cell cycle targets; Supplemental Table S4). The overlap in

IMP nodes identified from this exercise was ;40% (Supplemental

Fig. S5). Thus, any random set of source when used with the same

cell cycle targets does not identify a conserved set of IMP nodes.

Finally, the overlap between our CH1 IMP nodes and the three sets of

random IMP nodes was <38% (Supplemental Fig. S5), further con-

firming that the observed overlap in IMP nodes between the three

independent screens obtained with the two other independent RNAi

screen results was, indeed, significant and not a random or biased

event.

These cumulative findings thus establish the significance of

our methodology for further interrogating the siRNA screen re-

sults. In addition, they also support the likelihood that the IMP

nodules identified from our data constitute conserved regulatory

elements of the mitogen-dependent signaling network.

The G1 and G1S IMP node modules represent conserved
elements of mitogen-activated signaling cascades

To experimentally verify our above inference that the delineated

IMP node modules may constitute invariant features that are com-

mon to all dividing cells, we took a panel of 14 human cell lines

derived from a diverse range of tissue types (see Supplemental Fig.

S6B). These cells were treated with a single dose of either the com-

bined inhibitors of AKT and ABL or, for purposes of comparison,

combinations of inhibitors against the siRNA-identified targets (C1,

C2, and C3 in Fig. 4F). The frequency of apoptotic cells obtained in

each case was then determined 48 h later, and the results are pre-

sented in Figure 7A. The efficacy of the inhibitor combinations C1,

C2, and C3 was highly restricted with the combination C2 inducing

significant (i.e., >30%) apoptosis only in four of the cell lines tested.

Furthermore, with the exception of Jurkat cells, effects on the

remaining cell lines were predominantly due to CHEK1 inhibition

with little or no contribution from PKA inhibition (Supplemental

Fig. S6). This was also true of the effects of combination C1 on THP1

and U937 cells, whereas the combination C3 was virtually ineffec-

tive (Fig. 7A).

In contrast to these limited effects, simultaneous inhibition of

AKT and ABL induced significant levels of apoptosis in all the cell

lines tested, which also included HeLa and U2OS cells (Fig. 7A).

This effect was further enhanced by the 72-h time point, where the

number of apoptotic cells was >80% in all cases. These findings,

therefore, further support the functional distinction between at

least the hits from the siRNA screen tested here, and the high vul-

nerability nodes identified from a graph theoretical derivation of the

phase-specific regulatory modules. That is, in comparison with the
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former group, the latter represents nodes that are involved in a less

redundant manner, during cell cycle regulation of a broader range

of cancer cell types. Notably, none of the inhibitor combinations

examined had any significant effect on viability of normal B-lym-

phocytes purified from the peripheral blood of six different in-

dividuals (Fig. 7B). This confirms that the functional relevance of

AKT1 and ABL1 is only expressed in actively cycling cells.

To assess whether responses to the combined inhibition of

ABL and AKT in Figure 7A were synergistic, we determined the CI

values from dose-response curves either to LY294002, imatinib

Figure 7. Vulnerable nodes constitute regulatory elements that are conserved across a broad range of cell types. (A) The effects of combined inhibition
of the indicated kinase combinations (at concentrations of 5 3 IC50 values) on 14 different cancer cell lines, following a protocol similar to that described
for Figure 5F; (B) the results of a similar experiment with indicated inhibitor combinations performed on normal B-lymphocytes purified from the pe-
ripheral blood of six different individuals. (C ) The CI values for the combined inhibition of AKT and ABL obtained for the individual cell lines. CI values were
calculated as previously described (Chou and Talalay 1981). For four cell lines, CI values could not be estimated since either one (for Namalwa and THP1)
or both (for Jurkat and A549) inhibitors showed no effect when added individually (indicated as broken bars). The red line defines the cutoff (CI = 1) for
interpreting responses as being synergistic, and values are the mean (6SD) of three determinations. (D) Representative results for the synergy between
AKT and ABL inhibition where one (Namalwa) or both (Jurkat) inhibitors were ineffective when added individually. (E) The effects of the inclusion of PP1a,
in addition to LY294002 and imatinib mesylate, on the apoptotic responses of HEK293 and HEPG2 cells. Results are shown in two subpanels for each cell
line, where the subpanel on the left indicates the effects either of LY294002, imatinib mesylate alone (each at 4 3 IC50), or a combination of both. The
subpanel on the right gives the results of the addition of increasing concentrations of PP1a either alone (blue line), or in the presence of the combined
inhibitors for AKT and ABL (each at 4 3 IC50, red line). Values again are the mean (6SD) of three determinations.
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mesylate, or the combination of both in each instance. Figure 7C

shows clear evidence for a synergistic effect in 12 of the 14 cell

lines. Importantly, this also included examples in which either one

(imatinib mesylate in Namalwa and THP1 cells) or both inhibitors

( Jurkat and A549 cells) had no significant effect on cell survival

when administered individually (Fig. 7D), further emphasizing the

extent of cooperativity achieved by the inhibitor combination in

these cells. For the remaining two cell lines, however (HEK293 and

HEPG2), combined inhibition of both ABL and AKT yielded an

outcome that was only additive in nature. We reasoned that this

absence of synergy for the inhibitor combination in these latter

two cell lines could derive from subtle, cell-type-inherent, differ-

ences in the architecture of the IMP node modules. This could then

influence the degree of vulnerability exhibited by AKT1 and ABL1.

Consequently, we probed this latter group further by also including

SRC inhibitor PP1a, along with those for ABL and AKT. As earlier

discussed, SRC principally functions by mediating either AKT1 ac-

tivation in the G1 phase or ABL1 activation in the G1S phase.

Figure 7E shows that although SRC inhibition alone had no

significant effect on either of the cell lines tested, a strong syner-

gistic effect was nonetheless obtained when it was combined with

the inhibitors of both AKT and ABL. Thus, by combining SRC in-

hibition along with that for AKT1 and ABL1, it seems possible to

also guard against any cell-type-specific variations in topology of

the G1 and G1S IMP node modules. Important here is that in all

cases involving inhibition of vulnerable nodes—or their combi-

nations—in Figure 7, increased apoptosis was always preceded by

an accumulation of cells in the G1 phase, supporting that cell death

was, indeed, mediated through an arrest in the cell cycle. These

cumulative results, therefore, confirm that the G1 and G1S IMP

node modules described in Figure 4, indeed, represent signal pro-

cessing elements that commonly mediate cell cycle progression in

at least a wide range of cell types. Furthermore, the vulnerable

nodes that they incorporate provide sensitive targets for achieving

an efficient disruption of the cell cycle regulatory network.

Discussion
RNAi-based screens are now being commonly used to probe a wide

variety of biological processes. Recent results, however, have begun

to highlight limitations inherent to this approach. Prominent

among these are the preponderance of false negatives and the highly

cell-type-restricted nature of the results obtained (Bushman et al.

2009). Consequently, the poor convergence between results from

different laboratories often hampers the extraction of any mean-

ingful interpretation. It was for this reason that we were prompted to

explore graph theoretical approaches for unraveling the mechanis-

tic implications of the hits identified in our screen. Previous studies

support the utility of analyzing network interactions in receptor-

specific pathways, to generate insights into signaling mechanisms.

Furthermore, they also emphasized the potential of this approach

for identifying new drug targets (Tu et al. 2009; Astsaturov et al.

2010; Bandyopadhyay et al. 2010).

Central to our analysis was the identification of phase-specific

IMP nodes, which were selected on the basis of their unique over-

representation in each of the phase-specific regulatory subnetworks.

These IMP nodes likely combine the traits of minimal functional re-

dundancy and increased specificity of action, in the context of regu-

lation of the respective window of the cell cycle. By extension then,

the modules defined by the phase-specific group of IMP nodes also

likely constitute the key regulatory elements that process mitogenic

(and oncogenic?) signals for the corresponding cell cycle phases. Here,

a reexamination of data from the two previously described screens

validated both the relevance and significance of our approach. The

virtually similar IMP node network that was extracted in all cases

also lent preliminary support to our proposition of the existence of

a conserved set of core elements that regulate mitogenic signals.

Examination of the incorporated links revealed novel details

on the mode of functioning of these modules. For instance, the G1

and G1S modules both participate in the critical function of co-

ordinating cell cycle progression with cell growth, in a setting in

which pro-apoptotic pathways are inhibited. The shared activities

between the individual modules maintains contiguity during

progression of cells from early G1 up to the S phase, whereas in-

tegration between the three modules promotes temporal evolution

of the spectrum of biochemical processes that drive commitment

of cells to the cycle. Particularly significant here was our discovery

that the G1 and G1S phases were controlled by distinct signaling

axes that were composed of SRC-AKT and SRC-ABL, respectively.

Furthermore, we also subsequently elucidated that it was the

switch between these two axes that guided transition of cells from

early to late G1/G1S.

In addition to defining the receptor-proximal signals, however,

our cumulative results further established that the IMP node mod-

ules, in fact, also capture the key regulatory elements that translate

the effector consequences of mitogenic/oncogenic signaling to the

respective stages of the cell cycle. In this connection, our experi-

ments demonstrating that these cumulative functional properties of

the G1 and G1S modules were conserved across a diverse panel cell

lines is particularly significant. That is, these phase-specific modules

presumably describe core information-processing units of the mi-

togen-activated signaling network, which function—in at least a

broad range of cell types—to ensure irreversible commitment to the

cycle. Future studies on the systems properties of these modules may

provide important clues on mechanisms underlying cell transfor-

mation, and also on factors that govern properties related to cellular

growth rate such as tumor aggressiveness and metastasis.

The identification of IMP node modules and delineation of

their vulnerable constituents also facilitated the exploration of a

potentially more effective strategy for chemotherapy. In view of

the pathway redundancies that are inherent to signaling networks,

current emphasis is on approaches that involve a concerted

pharmacological intervention at multiple key targets (Lehar et al.

2008b). The challenge, however, is to identify the most appropri-

ate combination of nodes to be targeted, and present approaches in

this direction are limited by the vast space of high-order combi-

nations that are theoretically possible (Lehar et al. 2008a). Here,

our present strategy of extracting vulnerable nodes from the core

elements that process input signals in a context-specific manner

alone serves to reduce the dimensions of combination space to be

explored by several orders of magnitude. Furthermore, as we have

demonstrated, the relative functional conservation of these regu-

latory elements also implies that the benefits of targeting such

nodes would be at least less cell-type-restricted.

From a broader point of view, the above results also support

that targeting nodes derived from modules that regulate temporally

distinct stages provide for a more effective means for breaching the

fragility barrier of the cell cycle regulatory network. That is, these

findings emphasize the potential of exploiting the temporal di-

mensions of a biological process, an aspect that is presently ignored

in ongoing drug development exercises. At one level, targeting

combinations of nodes whose functional vulnerabilities are con-

served can potentially override current limitations faced due to

problems of cell- and tissue-type heterogeneity. In addition, the
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observed synergism between AKT1 and ABL1 inhibition also entails

a broader therapeutic window, thus providing an advantage over

several of the chemotherapeutic agents currently in use (Kaelin

2005). Our proposal is particularly well supported by emerging ev-

idence that a role for constitutive ABL activity is not restricted to

CML alone but, rather, is now implicated in a broader spectrum of

cancers (Sirvent et al. 2008). This would be consistent with our

present description of ABL1 as the key regulatory signaling molecule

that drives the G1S phase. Also to be noted in this context is

the possibility of exploiting the other vulnerable nodes that were

identified in the individual IMP node modules, through the de-

velopment of specific inhibitors.

Thus, in summary, our present report describes an integration

of results from a siRNA screen with graph theoretical analysis, to

delineate the core signaling modules that regulate the early phases

of the cell cycle. Importantly, these modules could be demon-

strated to represent elements that were conserved across a broad

range of cell types and could be exploited for elaborating novel

mechanistic features pertaining to signal-mediated regulation of

the cell cycle. Notable among these was the delineation of the

distinct core signaling axes that governed early and late G1 phases,

and subsequent elucidation of the seamless manner in which the

switch between them was integrated. Furthermore, successful res-

olution of the least redundant nodes in each of the regulatory

modules also permitted the development of a strategy for multi-

module targeting in order to achieve synergistic disruption of the

cell cycle. These latter findings thus pave the way for overcoming

the daunting challenge presently faced, in identifying target com-

binations that can yield synthetic lethal effects in mammalian cells

(Kaelin 2005, 2009).

Methods

Materials
All cell lines used in this study were originally procured from the
American Tissue Culture Collection with the exception of AW8507,
which was obtained from Shubha Chiplunkar (ACTREC, Navi
Mumbai). Normal B-lymphocytes were purified from the blood of
donors by using the B-cell negative selection kit from Dynal and
following the protocol recommended by the manufacturer. Purity of
these cells were >90% as assessed by CD19 staining. Antibodies were
purchased from Cell Signaling Technologies. For the primary screen,
siRNAs were obtained from QIAGEN, whereas for the validation
screen they were obtained either from Sigma Chemical Co. (for ki-
nases) or from Dharmacon Inc. (for phosphatases). Further details of
these are provided in the Supplemental Experimental Procedures.
All chemical inhibitors used here were purchased from Tocris Bio-
sciences except for imatinib mesylate, which was obtained as a gift
from Sundeep Dugar (Sphaera Pharma).

siRNA screen

Details of the standardization of conditions for the siRNA screen,
the protocol adopted, and the data analysis procedures are pro-
vided in the Supplemental Experimental Procedures. Briefly, CH1
cells were seeded in wells of a 96-well plate at 2 3 104/well and
transfected, in duplicate, either with control or target-specific
siRNA. At 72 h later these cells were stained with propidium iodide
and analyzed for the DNA content by flow cytometry. An analysis
of the results using the FlowJo software yielded the DNA histo-
grams for quantification of the sub-G1, G1, S, and G2 populations.
The Z-scores for each parameter were then calculated by using the
corresponding mean values, and the standard deviations, of the

five negative controls in each plate as described in the Supplemental
Experimental Procedures. Short-listed hits were then taken for fur-
ther validation as described in the text. By using various criteria, we
also confirmed that our screen was robust, reproducible, and sen-
sitive with an overall z-factor of 0.56 (see the Supplemental Exper-
imental Procedures). Determination of the effect of siRNA treatment
on the population doubling time and the consequent estimation of
phase-specific RTs is also described in detail in the Supplemental
Experimental Procedures.

Network analyses

An outline of the approach is described in Figure 2C. A step-by-step
description of the graph theoretical approaches for arriving at the
IMP node networks and—eventually—the vulnerable nodes is
provided in the Supplemental Experimental Procedures.

Data access
Publicly available Protein–Protein interaction databases used in
this study have been mentioned and also have been cited at the
appropriate places in the text. Novoseek disease relationship scores
were obtained from http://www.novoseek.com/Welcome.action.
The Supplemental Material includes six additional figures and
eight tables.
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