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b-Catenin is essential for embryonic development and required for cell renewal/regeneration in adult life. Cellular b-catenin
exists in three different pools: membranous, cytoplasmic and nuclear. In this review, we focus on functions of the nuclear
pool in relation to tumorigenesis. In the nucleus, b-catenin functions as both activator and repressor of transcription in
a context-dependent manner. It promotes cell proliferation and supports tumour growth by enhancing angiogenesis.
b-Catenin-mediated signalling regulates cancer cell metabolism and is associated with tumour-initiating cells in multiple
malignancies. In addition, it functions as both pro- and anti-apoptotic factor besides acting to inhibit recruitment of
inflammatory anti-tumour T-cells. Thus, b-catenin appears to possess a multifaceted nuclear function that may significantly
impact tumour initiation and progression.
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1. Introduction

b-catenin, a 781-amino-acid protein, is well known as the
effector molecule of canonical Wnt signalling. It was dis-
covered (along with a- and c-catenin) as an E-cadherin-
associated protein in the late 1980s (Ozawa et al. 1989).
Human b-catenin is a highly conserved protein having 67%
identity to its Drosophila homolog Armadillo, whereas only
6 amino acids differ between the human and Xenopus pro-
teins (as reviewed in Shapiro and Weis 2009). The central
region (residues 141–664) consists of 12 Armadillo (ARM)
repeats (R1–12), flanked by well-defined N- and C-terminal
domains (NTD and CTD). b-Catenin binding partners
interact with the ARM repeats R3–R9 and form salt bridges
with amino acid residues Lys312 and Lys435, whereas rest
of the ARM repeats strengthen the interactions (Huber et al.
1997). Terminal domains (NTD and CTD) may also con-
tribute to the binding (Solanas et al. 2004). During embry-
onic development, b-catenin regulates cell fate
determination and body axis patterning in all metazoans (as
reviewed in Clevers 2006 and van Amerongen and Nusse
2009). It is also required for cell renewal/regeneration and
tissue homeostasis in later stages of animal life. Cellular b-
catenin exists in three different pools: membranous, cyto-
plasmic and nuclear (summarized in figure 1). Freshly

synthesized b-catenin localizes to Adherens Junctions (AJs)
via interaction with E-cadherin (membranous pool), whereas
excess b-catenin is captured by a destruction complex (cy-
toplasmic pool). In the presence of a sub-optimally func-
tioning destruction complex, excess b-catenin translocates
into the nucleus (nuclear pool) (as reviewed in Grigoryan
et al. 2008). Conformation change and interaction with
different binding partners may contribute to its varied
functions as discussed in detail below. Of note, b-catenin is
associated with various pathological conditions like cancer,
neurodegenerative disorders and osteoporosis (as reviewed
in MacDonald et al. 2009). In this review, we will focus on
function of b-catenin in the different pools in relation to
cancer biology, with particular emphasis on the nuclear pool.

2. Three cellular pools of b-catenin and tumorigenesis

2.1 The membranous pool

As a structural protein localized to the cell membrane, b-
catenin plays crucial role in maintaining cell adhesion. Using
the entire ARM domain, it interacts with the cytoplasmic
domain of E-cadherin and connects a-catenin to E-cadherin;
the N-terminus of b-catenin (residues 120–147) forms the
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binding site for a-catenin. Binding of a-catenin to b-catenin
distorts the continuity of the first ARM repeat and creates a
hinge region which in turn permits b-catenin to bind both
E-cadherin and a-catenin (Pokutta et al. 2000). The b-
catenin–a-catenin complex links cadherin to the actin
cytoskeleton (as reviewed in Takeichi 1995 and Morin
1999); this link is crucial for assured cadherin-mediated cell
adhesion (as reviewed in Shapiro and Weis 2009). The
catenin-cadherin interaction is dynamic in nature and its
disintegration promotes release of b-catenin from the
membrane (as reviewed in Heuberger and Birchmeier 2010).
b-Catenin release from membrane is promoted by protease-
mediated cadherin (Ito et al. 1999) or b-catenin (Abe and
Takeichi 2007) cleavage. b-Catenin phosphorylation at
Tyr142 by the Fer/Fen tyrosine kinase notably diminishes a-
catenin binding and thus weakens its adhesive function
(Piedra et al. 2003). Perturbed cadherin-catenin interaction
results in loss of cell adhesion causing polarized epithelial

cells to ‘transform’ into motile mesenchymal cells; a
phenomena popularly termed epithelial–mesenchymal tran-
sition (EMT) (as reviewed in Martin et al. 2013 and Huber
et al. 2005). EMT plays a crucial role during embryonic
development (as reviewed in Thiery et al. 2009) as well as in
tumour invasion and metastasis (as reviewed in Lamouille
et al. 2014). In contrast, Tyr654 phosphorylation reduces b-
catenin binding to cadherin and may direct b-catenin into
cytoplasmic and nuclear pools (Piedra et al. 2001). Phos-
phorylation driven b-catenin release (from membrane) is
counter-balanced by phosphatases (protein tyrosine phos-
phate 1B, PT1B) that dephosphorylate b-catenin at Tyr654
(Balsamo et al. 1996).

2.2 The cytoplasmic pool

Free b-catenin in the cytoplasm, when recognized by a multi-
protein destruction complex, is first phosphorylated at S45 by
casein kinase 1 alpha (CK1a) and then at S33, S37 and T41 by
glycogen synthase kinase 3 beta (GSK3b) (as reviewed in
Heuberger and Birchmeier 2010) (Fig. 1) and targeted for
proteasome-mediated degradation by b-TrCP, an E3-ubiquitin
ligase (as reviewed in Stamos and Weis 2013). Surprisingly,
not all cytoplasmic b-catenin undergoes degradation. A frac-
tion of phosphorylated b-catenin localizes to centrosomes and
regulates proper mitotic spindle establishment (Chilov et al.
2011; Kaplan et al. 2004) (figure 1). In the beginning of
mitotic spindle formation, b-catenin participates in centro-
some cohesion and dissociation and its depletion obstructs de
novo formation of microtubules (Huang et al. 2007). During
cell division, a centromeric serine/threonine-protein kinase
NEK2 (NIMA-RelatedKinase 2), regulates b-catenin stability
at centrosomes (Bahmanyar et al. 2008). NEK2 phosphory-
lates b-catenin at GSK3b phosphorylation sites and competes
with b-TrCP to block b-TrCP and b-catenin interaction,
leading to inhibition of b-catenin proteosomal degradation,
which results in accumulation of phosphorylated b-catenin at
centrosomes (Mbom et al. 2014).During interphase, phospho-
b-catenin localizes mostly to the mother centriole; whereas
localization is favoured towards daughter centriole during
mitosis (Fuentealba et al. 2008; Huang et al. 2007). Taken
together, above findings suggest a role of phosphorylated b-
catenin in centrosome and microtubule functioning. It is not
clear how b-catenin-mediated centromeric cohesion ensures
proper spindle formation. Future studies on b-catenin inter-
acting proteins located to centrosomes can give insight into its
role in regulating mitotic spindles.

2.3 The nuclear pool

Due to compromised function of the destruction complex, b-
catenin escapes degradation and translocates to the nucleus
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Figure 1. Diagrammatic representation of various cellular loca-
tions of b-catenin.
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to participate in transcriptional reprograming (Munemitsu
et al. 1995; Iwao et al. 1998; Sparks et al. 1998) (figure 1).
Nuclear translocation mechanism of b-catenin is not com-
pletely understood (as reviewed in Städeli et al. 2006). b-
catenin cannot bind to the promoter(s) of its transcriptional
targets, as it does not possess any DNA binding domain. It
functions by binding to other DNA binding transcription
factors (Xing et al. 2008) and dictates transcriptional acti-
vation of a plethora of genes (Behrens et al. 1996; Herbst
et al. 2014). Many b-catenin transcriptional co-factors have
been identified, which indicates complexity of b-catenin-
mediated transcription regulation. These mainly include
proteins belonging to the T cell factor/lymphoid enhancer
factor (TCF/LEF) family (as reviewed in Cadigan and Nusse
1997). Genes activated by the b-catenin–TCF complex
regulate several biological processes ranging from cell pro-
liferation to anti-tumour immunity (Schuijers et al. 2014;
Spranger et al. 2015). The consensus DNA binding motif of
TCF has been derived based on several single base substi-
tution studies (Tuupanen et al. 2009; Wright et al. 2010).
Other non-canonical b-catenin partners include AP-1 (Nateri
et al. 2005), oestrogen receptor alpha (Kouzmenko et al.
2004), Forkhead box protein O1/4/3a (Essers et al. 2005),
HIF1-alpha (Kaidi et al. 2007), hB1F (Botrugno et al. 2004),
Oct-4 (Zhang et al. 2013), p50 (Kim et al. 2005) and SOX-
17 (Sinner et al. 2004). b-catenin also interacts with the
androgen receptor and regulates expression of several genes
(Truica et al. 2000; Yang et al. 2002). In colorectal cancer
cells, b-catenin-dependent transcription is inhibited by acti-
vation of vitamin D receptor to promote cell differentiation
(Pálmer et al. 2001; Shah et al. 2006). Similarly, retinoic
acid receptor-mediated inhibition of b-catenin signalling
pathway is also validated (Easwaran et al. 1999). b-Catenin
functions as both activator and repressor of transcription.
Using its C terminus, it brings transcription activating
complexes to promoters of target genes to ensure efficient
transcription (Hecht et al. 2000; Barker et al. 2001); whereas
b-catenin-mediated transcription repression mechanism is
diverse and not well understood (as reviewed in Valenta
et al. 2012). Recruitment of b-catenin to the promoter of E-
cadherin in keratinocytes (Jamora et al. 2003) and
p16INK4a in melanocytes (Delmas et al. 2007) represses
their transcription.

The intestinal lumen epithelium undergoes rapid regen-
eration to maintain homeostasis. The lumen comprises sac
like structures called crypts of Lieberkühn. Crypts harbour
enterocytes, intestinal stem cells (ISCs) and paneth cells.
Paneth cells play critical role in maintaining enterocyte and
stem cell cohabitation (as reviewed in Clevers and Bevins
2013) whereas enterocyte functions mainly in nutrient
absorption. ISCs divide in a highly controlled manner to
replenish the lumen epithelium. Several studies have pro-
posed a pivotal role for b-catenin signalling in functioning of
ISCs. Nuclear b-catenin has been shown to localize near

base of the intestinal crypts (and not in the apical region)
(van de Wetering et al. 2002) and is essential for intestinal
epithelium homeostasis (Fevr et al. 2007). Direct role of b-
catenin in maintaining crypt homeostasis was shown in a
study where Ephrin type-B receptor 3 (a b-catenin target)
was found to be essential for proper allocation of paneth
cells to the crypt bottom (Batlle et al. 2002).

Elevated nuclear levels of b-catenin are found in several
cancers including colorectal (Cheah et al. 2002), adreno-
cortical (Gaujoux et al. 2011), endometrial (Scholten et al.
2003), glioblastoma (Liu et al. 2011), hair follicle (Doglioni
et al. 2003) and hepatocellular carcinoma (Liu et al. 2010).
b-catenin exhibits heterogeneous distribution pattern in
colorectal cancer; well differentiated cancer cells present at
the centre of tumour possess membrane expression akin to
normal colon epithelium whereas undifferentiated invasive
fronts and stroma manifest nuclear expression (as reviewed
in Brabletz et al. 1998 and Fodde and Brabletz 2007). More
importantly, b-catenin is associated with patient survival,
however different studies report different direction of asso-
ciation. Nuclear stabilised b-catenin predicts poor (Li et al.
2013; Inagawa et al. 2002) as well as better prognosis
(Hommura et al. 2002) in non-small cell lung carcinomas.
Nuclear phospho b-catenin predicted better prognosis in
colon cancer (Chung et al. 2001) whereas nuclear overex-
pressed b-catenin was associated with poor prognosis
(Nazemalhosseini Mojarad et al. 2015; Kazem et al. 2014).
The contradictory effect(s) of b-catenin on cancer prognosis
is not surprising. Reduced expression is expected to de-
stabilize Adherens junctions leading possibly to increase
migration and invasion resulting in poor prognosis. In con-
trast, increased expression particularly in the nucleus is
expected to promote tumorigenesis due to transcriptional
activation of oncogenic targets, thus also potentially result-
ing in poor prognosis. In addition, different forms (phos-
phorylated vs non-phosphorylated) may have different effect
on cancer prognosis. Moreover, its differential prognostica-
tion in different cancers may also stem from the presence/
absence of cross-talk with other pathways/proteins.

2.3.1 Nuclear b-catenin and tumour proliferation and
growth: Sustained cell proliferation is a hallmark of cancer
cells (as reviewed in Hanahan and Weinberg 2011). Acti-
vation of b-catenin in mouse intestinal villi causes increased
proliferation which in turn leads to adenomatous lesions and
polyposis (Harada et al. 1999). b-Catenin activation pro-
motes cell proliferation through cell cycle progression (G1 to
S) (as reviewed in Davidson and Niehrs 2010). Possibly, G1
progression takes place through upregulation of the b-cate-
nin transcriptional target, c-Myc and cyclin D1 (He et al.
1998; Shtutman et al. 1999). c-Myc serves a dual function in
G1 progression. It upregulates cyclin D1 (Daksis et al. 1994)
while repressing p21 and p27 expression (Gartel et al. 2001;
Yang et al. 2001). Other b-catenin transcriptional targets that
induce tumour cell proliferation and growth are listed in
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table 1. Small interfering RNA-mediated b-catenin
knockdown restrains colon cancer cell growth in vivo and
in vitro (Verma et al. 2003; Xu et al. 2010). In mouse model
studies, constitutively active b-catenin was shown to pro-
mote tumour growth in prostate cancer (Pearson et al. 2009;
Yu et al. 2011). Mutationally activated b-catenin causes
pilomatricoma (tumour originating from hair matrix and hair
germ) (Fuchs et al. 1999). Expression of constitutively
active b-catenin provides growth enhancement to myeloma
cells in vitro (Derksen et al. 2004). Nuclear stabilized b-
catenin is associated with proliferation in hepatocellular
carcinoma (Inagawa et al. 2002; Nhieu et al. 1999). The
positive effect of b-catenin on tumour proliferation and
growth is brought about by activation of a variety of other
genes with different target genes being pivotal in different
cancers. Although several previous studies had suggested
possible cross-talk between Wnt/b-catenin and EGFR sig-
nalling pathways, the study by (Guturi et al. 2012) provided
clinching evidence for b-catenin-mediated transcriptional
activation of EGFR that further resulted in activation of cell
proliferation in prostate cancers cells. The complex and
multi-level cross-talk between these two pathways was also
validated in Glioblastoma (as reviewed in Paul et al. 2013)

as well as in epithelial tissue regeneration (Georgopoulos
et al. 2014). Similarly, melanoma growth is brought about
by microphthalmia-associated transcription factor (MITF), a
b-catenin target (Widlund et al. 2002). Further, MITF was
shown to directly interact with b-catenin resulting in tran-
scriptional induction of specific genes involved in both
melanocyte and melanoma development (Schepsky et al.
2006). Finally, more recent studies revealed an intricate
relationship between Wnt signalling and oncogenic role of
MITF in Melanocyte (and melanoma) development (Ploper
et al. 2015). Under Wnt7A activation, b-catenin regulates
ovarian tumour growth (Yoshioka et al. 2012) and prolifer-
ation (as reviewed in Arend et al. 2013). Further, b-catenin
supports tumour growth by enhancing angiogenesis, through
regulation of vascular endothelial growth factor (Mann et al.
1999). Interestingly, both Wnt signalling and oncogenic
mutant KRAS were shown to transcriptionally activate
VEGF in precursor colon cancer lesions (Zhang et al., 2001).
Similarly, b-catenin transcriptional activity could enhance
VEGF expression in hepatocellular carcinoma (Qu et al.
2014).

2.3.2 Nuclear b-catenin and EMT and metastasis: EMT
plays an essential role during cancer progression and

Table 1. List of b-catenin transcriptional targets with possible role(s) in cancer

Targets Biological process Cancer/cells References

c-Myc Proliferation Colorectal He et al. (1998)
Cyclin D1 Proliferation Colorectal Shtutman et al. (1999)
JAG1 Proliferation Colorectal Rodilla et al. (2009)
EGFR Proliferation Prostate Guturi et al. (2012)
Aurora kinase A Proliferation Myeloma Dutta-Simmons et al. (2009)
MITF Proliferation Melanoma Widlund et al. (2002)
FGF 9 Proliferation Ovarian Hendrix et al. (2006)
VEGF Angiogenesis Colorectal Easwaran et al. (2003)
Twist EMT Breast Howe et al. (2003)
Slug EMT Colorectal Conacci-Sorrell et al. (2003)
Zeb1 EMT Colorectal Sanchez-Tillo et al. (2011)
BOP1, CKS2 and NFIL3 EMT Colorectal Qi et al. (2015)
HEF1 Migration Colorectal Li et al. (2011)
MMP2 EMT T-cells Wu et al. (2007)
MMP9 Migration Neural stem cells Ingraham et al. (2011)
MMP7 Migration Colorectal Brabletz et al. (1999)
MMP26 EMT Epithelial cancers Marchenko et al. (2002)
S100A4 Metastasis Colorectal Stein et al. (2006)
Tenascin C EMT Colorectal Beiter et al. (2005)
CST1 and EDN3 Metastasis Ovarian Schwartz et al. (2003)
ALDH1A1 TIC marker Colorectal Huang et al. (2009)
CD24 TIC marker Colorectal Yeung et al. (2010)
CD44 TIC marker Colorectal Zeilstra et al. (2008)
Lgr5 TIC marker Colorectal Kemper et al. (2012)
TERT TIC marker Colorectal Hoffmeyer et al. (2012)
AXIN2 Chromosomal Instability Colorectal Hadjihannas et al. (2006)
PDK1 Metabolism Colorectal Pate et al. (2014)
VGEF, BCL-2 and BIRC5 Anti-apoptotic Rat model Kaga et al. (2006)
MCL1, BCL2L11 and BBC3 Anti-apoptotic Melanoma Zimmerman et al. (2013)

EMT, epithelial–mesenchymal transition; TIC, tumour-initiating cells
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metastasis (as reviewed in Hay 2005; and Thiery et al.
2009). b-catenin-mediated EMT induction plays an impor-
tant role in tumour progression in several cancers including
squamous cell carcinoma (Taki et al. 2003) and CRC
(Brabletz et al. 2005). A key feature of EMT is replacement
of E-cadherin by N-cadherin at the cell membrane (as
reviewed in Zeisberg et al. 2009) which in turn perturbs
cadherin-catenin interaction; b-catenin can then be released
from the cell membrane and translocate to nucleus, if it
escapes cytosolic degradation (as reviewed in Heuberger and
Birchmeier 2010). Twist (a basic helix-loop-helix transcrip-
tion factor), a transcriptional target of b-catenin (Howe et al.
2003), downregulates E-cadherin expression to facilitate
tumour metastasis (as reviewed in Kang and Massague
2004). Snail1, Snail2 (Slug) and ZEB1 are additional
E-cadherin transcriptional repressors which function in a b-
catenin-dependent manner (Conacci-Sorrell et al. 2003; as
reviewed in Barrallo-Gimeno and Nieto 2005; Sanchez-Tillo
et al. 2011). Several additional transcriptional targets of b-
catenin have been identified that regulate EMT, cell migra-
tion and tumour metastasis (Table 1). p68 RNA helicase-
mediated nuclear translocation of b-catenin stimulates EMT
in cultured cancer cells (Yang et al. 2006; as reviewed in He
2006). Suppression of b-catenin signalling is also associated
with differentiation of colonic epithelial cells (Mariadason
et al. 2001). Epithelial cell polarity was restored in a col-
orectal cancer cell line upon repression of b-catenin-medi-
ated gene transactivation (Naishiro et al. 2001). Despite
increasing evidence of role of epithelial–mesenchymal
transition in cancer metastasis, methods of treating same
remains limited. Better understanding of exact role of b-
catenin in this important process may help in development of
therapy targeted against metastasis.

2.3.3 Nuclear b-catenin and tumour-initiating cells (TICs)
and tumour micro-environment (TME): TICs (previously
called as cancer stem cells) are a sub-population of tumour
cells having capacity of self-renewal (to generate tumour)
and to differentiate into any cell type within tumour to
promote growth and metastasis (as reviewed in Jordan et al.
2006; and Reya et al. 2001). b-Catenin-mediated signalling
is associated with TICs in multiple malignancies, including
breast (Lamb et al. 2013), colon (Shenoy et al. 2012), gastric
(Yong et al. 2016), and glioblastoma (Kaur et al. 2013).
Several b-catenin target genes, listed in Table 1, serve as
prominent markers for TICs. PCNA-associated factor (PAF)
activates b-catenin transcriptional target (Jung et al. 2013)
and regulates cell plasticity to maintain breast cancer cell
stemness (Wang et al. 2016). b-Catenin mediates drug
resistance in Mixed Lineage Leukemia TICs (J. Yeung et al.
2010) and its loss impairs renewal of Chronic myelogenous
leukemia stem cells (Zhao et al. 2007). c-Kit-mediated b-
catenin regulation enhances self-renewal and expansion of
TICs to promote ovarian tumorigenesis (Chau et al. 2013).
b-catenin was shown to maintain ovarian cancer spheroid

culture and promote tumour formation via ALDH1A1
(Condello et al. 2015). In hepatocellular carcinoma, TGFb-
activated b-catenin induces an early liver progenitor phe-
notype and promotes tumour recurrence (Zulehner et al.
2010). WNT16B-mediated b-catenin signalling in prostate
TME promotes prostate cancer cell survival and tumour
progression (Sun et al. 2012); whereas miR-320-mediated b-
catenin downregulation supresses stem-cell-like properties
(Hsieh et al. 2013). By regulating Telomerase (TERT, a
direct target of b-catenin) expression, b-catenin may help in
maintaining telomere length of TICs, thus promoting their
maintenance (Hoffmeyer et al. 2012).

Generally, cancer cells are surrounded by stromal cells
which include various immune cells, endothelial cells,
fibroblasts, and mesenchymal stem cells (MSCs) (as
reviewed in Friedl and Alexander 2011). Interplay between
cancer and stromal cells creates the TME, which plays an
essential role during all stages of tumorigenesis (as reviewed
in Mbeunkui and Johann 2009). In oesophageal cancer,
tumour-associated fibroblasts secrete Wnt2 into the tumour
milieu, to promote b-catenin-mediated signalling in adjacent
malignant cells for tumour progression (Fu et al. 2011).
Ectopic expression of b-catenin in breast-cancer-associated
fibroblasts increases proliferation of co-cultured cancer cells
(Verghese et al. 2011). b-Catenin secreted via exosomes
from tumour cells regulates genes in the neighbouring
fibroblasts to inhibit differentiation and promote TIC
expansion in their niche (Klapholz-Brown et al. 2007).
Altogether, these studies underscore the role of b-catenin
signalling in regulating TICs and TME to promote tumour
growth. With the advent of organoid cultures, upcoming
studies may provide more insight into role of b-catenin in
regulating TME and its interplay in tumorigenesis.

2.3.4 Nuclear b-catenin and chromosomal instability:
Chromosomal instability (CIN) is an early event in tumori-
genesis (Nowak et al. 2002; as reviewed in Grady 2004)
characterized by structural abnormalities in chromosomes
and/or change in their dosage (aneuploidy) (Geigl et al.
2008; as reviewed in Pikor et al. 2013). CIN is an important
hallmark of cancer (as reviewed in Negrini et al. 2010;
Lengauer et al. 1997). Accumulation of genomic alterations
is suggested to be an important cause of clonal heterogeneity
(as reviewed in Sieber et al. 2003 and Janssen and Medema
2013). Several studies have highlighted nuclear transcrip-
tionally active b-catenin to be an important driver of CIN.
Wnt-signalling-mediated aberrant activation of b-catenin
causes CIN in colon cancer (Hadjihannas et al. 2006; Mår-
tensson et al. 2007) and T cell lymphomas (Dose et al.
2014). In cancer cells, the b-catenin target AXIN2 modulates
mitotic spindle check point by interacting with spindle check
point regulator Polo-like kinase 1 (PLK1) to induce gain or
loss of chromosomes, thus generating CIN (as reviewed in
Hadjihannas and Behrens 2006). In gastric tumours, ana-
phase bridge index (an indicator of CIN) is in concordance
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with nuclear b-catenin expression; b-catenin signalling
deregulates G2/M progression and promotes escape from
mitotic arrest and apoptosis to generate CIN (Aoki et al.
2007). The b-catenin target c-Myc generates CIN via ROS-
mediated DNA damage and promotes aneuploidy through its
targets Mad2 and BubR1 (as reviewed in Prochownik and Li
2016 and Schvartzman et al. 2010). Activated c-Myc also
induces chromosomal structural aberrations like fusion of
centromere and telomere, chromosome breaks, deletion and
translocation to trigger CIN via c-myc activation (as
reviewed in Kuzyk and Mai 2014). Altogether, b-catenin
appears to promote CIN by modulating target gene expres-
sion. Although the importance of CIN in tumour progression
in solid tumours is well established, the role of b-catenin in
generating CIN is not understood in detail.

2.3.5 Nuclear b-catenin and cancer cell metabolism: A
cancer cell reprograms its metabolism in order to facilitate
growth and survival (as reviewed in Pavlova et al. 2016;
Warburg 1956). The most well-studied metabolic process in
cancer cell is the manifestation of increased aerobic gly-
colysis (‘Warburg effect’) (as reviewed in Vander Heiden
et al. 2009). The Warburg effect describes an oft-noted
observation in a cancer cell wherein generation of energy in
the form of ATP is achieved predominantly using aerobic
glycolysis followed by fermentation of lactic acid in the
cytosol rather than through the ‘time-consuming’ TCA cycle
in the mitochondria; the latter being the norm in normal
cells. Several b-catenin transcriptional targets that regulate
cancer cell metabolism are listed in Table 1. b-Catenin along
with its co-activator Pyruvate kinase M2 (PKM2) induces
myc expression, which in turn promotes the Warburg effect
(Yang et al. 2012). In breast cancer, b-catenin regulates
mitochondrial respiration and glucose metabolism by
inducing expression of pyruvate carboxylase (a key enzyme
of anaplerosis) and by suppressing cytochrome C oxidase
(an integral enzyme of electron transport chain, essential for
oxidative phosphorylation) activity (Lee et al. 2012). b-
Catenin transcriptional target Pyruvate dehydrogenase
kinase 1 promotes aerobic glycolysis in colon cancer cells
(Pate et al. 2014). b-catenin targets are also involved in fatty
acid and glutamine metabolism in ovarian adenocarcinoma
(as reviewed in Sherwood 2015). There is also evidence of
b-catenin itself being regulated by oxidative stress. In breast
cancer cells, reactive oxygen species (ROS) were shown to
promote b-catenin-FOXO3a interaction resulting in decrease
of TICs and tumorigenicity (Dong et al. 2013). Furthermore,
specific nutrients are reported to modulate b-catenin sig-
nalling in cancer cells; glucose enhances b-catenin signalling
through its acetylation (Chocarro-Calvo et al. 2013). Taken
together, above studies give insight into the different modes
of b-catenin signalling integration with cancer cell metabo-
lism. Future studies on b-catenin signalling will shed light
on the manipulation process of altered tumour cell metabo-
lism to support cancer progression.

2.3.5 Nuclear b-catenin and programmed cell death and
autophagy Evading programmed cell death (apoptosis) is an
essential process during malignant transformation (Hanahan
and Weinberg 2011). Nuclear b-catenin increases cancer cell
proliferation and protects it against apoptosis (He et al.
1998; Tetsu et al. 1999). In a rat myocardial infarction
model, b-catenin was shown to promote anti-apoptotic sig-
nalling via induction of VGEF, BCL-2 and BIRC5 (Kaga
et al. 2006). b-catenin signalling has been shown to block
cytochrome c release to inhibit apoptosis in colorectal cancer
cells (Chen et al. 2001). In contrast, knockdown of b-catenin
disrupts mitochondrial membrane potential to induce apop-
tosis (Hsu et al. 2014). In metastatic melanoma cell lines,
downregulation of b-catenin induces apoptosis via reduction
in the expression of anti-apoptotic genes (Bcl-2, Mcl-1) and
the cell cycle regulator Cyclin D1 (Sinnberg et al. 2011).
However, contradictory studies also exist, where b-catenin
was shown to promote apoptosis. In melanoma cells, Wnt-
mediated b-catenin activation promotes TRAIL-dependent
apoptosis through increased pro-apoptotic (BCL2L11 and
BBC3) and decreased anti-apoptotic (MCL1) protein levels
(Zimmerman et al. 2013). Activation of b-catenin promotes
apoptosis in hematopoietic progenitor cells through the
intrinsic mitochondrial pathway (Ming et al. 2012). Upon
overexpression, b-catenin induces apoptosis in colon cancer
cell lines, independent of its LEF1 (transcriptional cofactor)-
dependent function (Kim et al. 2000; Lu et al. 2012). The b-
catenin target c-myc enhances mitochondrial-dependent
apoptotic signal (as reviewed in Hoffman et al. 2008) and
induces apoptosis (as reviewed in McMahon 2014) through
activation of cdc25A in growth-factor-depleted cells
(Galaktionov et al. 1996). It is not surprising that b-catenin,
being an oncogene, exhibits a contradictory role in regulat-
ing apoptosis. It is a normal cellular defence mechanism to
induce apoptosis upon aberrant, un-timely or very high level
activation of an oncogene, as is already known for other
oncogenes such as c-Myc (as reviewed in Hoffman et al.
2008); this could explain the positive effect of b-catenin on
apoptosis. However, transcriptional targets of b-catenin have
specific roles in inhibiting apoptosis in a context-dependent
manner. Thus, b-catenin functions as both pro-apoptotic and
anti-apoptotic factor.

Autophagy is a catabolic process that maintains cellular
homeostasis and is known to both promote and suppress
tumour growth (as reviewed in Yang et al. 2011 and Mathew
et al. 2007). b-Catenin appears to negatively regulate
autophagy in cancer. It regulates basal and stress induced
autophagy by suppressing autophagosome (a key structure in
autophagy) formation. However, in a negative feedback-
loop, autophagy induces proteasome-independent b-catenin
degradation to inhibit its signalling (Petherick et al. 2013).
Suppression of b-catenin pathway induces autophagy in
breast TICs (Fu et al. 2014) as well as in prostate cancer
cells (Lin et al. 2015). The role of b-catenin in cellular

700 Raju Kumar and Murali D Bashyam



autophagy has not been explored in detail thus far. Given the
importance of autophagy in tumorigenesis and the prelimi-
nary results from work done during past few years, the link
between b-catenin and autophagy is worth exploring.

2.3.6 Nuclear b-catenin and anti-tumour immunity: b-
Catenin signalling plays a significant role in immune cell
biology (as reviewed in Staal et al. 2008). Growing literature
supports role of tumour intrinsic b-catenin signalling in anti-
tumour immunity (Spranger et al. 2015; Sweis et al. 2016).
Intrinsic b-catenin signalling positively correlates with T-cell
exclusion in cutaneous melanoma (Spranger et al. 2015). In
addition, constitutively active b-catenin excludes T-cell
infiltration response against tumour antigens in mouse model
of melanoma (Spranger et al. 2015). Overexpression of b-
catenin inhibits melanoma-specific cytotoxic T-cell-mediated
IFN-c production in an IL-10-dependent manner and sup-
presses dendritic cell activity in vivo (Yaguchi et al. 2012).
These studies suggest the involvement of b-catenin sig-
nalling in suppression of anti-tumour immunoresponse. In
muscle-invasive urothelial bladder cancer, b-catenin sig-
nalling is present in non-T-cell-inflamed tumours, an
immunotherapy-resistant type (Sweis et al. 2016). Further
studies on tumour intrinsic b-catenin signalling and immune
response interplay may provide more insight into this
emerging and exciting area of b-catenin biology.

3. Conclusion

In this review, we have summarized the important role of
nucleus-restricted b-catenin in tumour biology. Nuclear b-
catenin appears to function in a dosage- and context-de-
pendent manner. As a multifunctional protein, it regulates
distinct biological processes by activating transcription of a
plethora of genes in a context-dependent manner, based on
interaction with a wide range of partners. Our understanding
of role of b-catenin in cancer has improved considerably. As
described above, it appears to regulate several pro-tumori-
genic process within the cell including cell cycle, apoptosis,
metabolism, etc. The importance of b-catenin signalling is
not only limited to tumour cells, but studies have suggested a
possible role in microenvironment and tumour-immunity as
well. However, knowledge of its coordination across com-
plex function(s) is still rudimentary. Therefore, a more
meticulous perception of molecular mechanisms is needed to
understand the full potential of the varied b-catenin-depen-
dent impact on tumorigenesis.
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Partanen J 2011 Phosphorylated b-catenin localizes to centro-
somes of neuronal progenitors and is required for cell polarity
and neurogenesis in developing midbrain. Dev.Biol. 357
259–268

Chocarro-Calvo A, Garcı́a-Martı́nez JM, Ardila-González S, De la
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