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Non-mendelian inheritance refers to the group of phenomena and observations related to the inheritance of
genetic information that cannot be merely explained by Mendel’s laws of inheritance. Phenomenon including
Genomic imprinting, X-chromosome Inactivation, Paramutations are some of the best studied examples of
non-mendelian inheritance. Genomic imprinting is a process that reversibly marks one of the two homologous
loci, chromosome or chromosomal sets during development, resulting in functional non-equivalence of gene
expression. Genomic imprinting is known to occur in a few insect species, plants, and placental mammals.
Over the years, studies on imprinted genes have contributed immensely to highlighting the role of epigenetic
modifications and the epigenetic circuitry during gene expression and development. In this review, we discuss
the phenomenon of genomic imprinting in mammals and the role it plays especially during fetoplacental
growth and early development.
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Genomic imprinting is a process that reversibly marks
one of the two homologous loci, chromosome or
chromosomal sets during development, resulting in
functional non-equivalence of gene expression. The
monoallelic expression of an imprinted gene is parent-
of-origin dependent. The phenomenon was recognized
in mammals due the pioneering work in 1980s on
mouse embryonic development and human genetic
disorders. Over the years, studies on imprinted genes
have contributed immensely to highlighting the role of
epigenetic modifications and the epigenetic circuitry
during gene expression and development.

1. Discovery of imprinted genes

Both parents, male and female contribute equal genetic
material to an offspring in a diploid organism. But it was
soon observed that parthenogenesis, the ability to pro-
duce offspring from unfertilized eggs, wide-spread in
invertebrates was not observed in vertebrates especially
mammals. In 1970s several attempts were made to
generate mammalian parthenotes. Most of the activated
mouse eggs could not develop beyond 25-cell somite
stage and died shortly post-implantation (Surani et al.
1984; Barton et al. 1984). These observations triggered
many questions in the field of embryo development
such as the role of sperm genome and egg cytoplasm in
development of embryos and differentiation of tissues
and role of haploid and diploid gene expression in
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embryo development. Several hypotheses such as
nuclear or cytoplasmic deficiencies which include non-
equivalence of male and female nucleus, homozygosity
of lethal genes, lack of extra-genetic contribution by
fertilizing sperm, lack of proper environment within the
egg cytoplasm that could mimic natural fertilization by
sperm were proposed to explain the death of
parthenogenetic embryos (Mcgrath and Solter 1984).
Reconstitution of zygotes with either two maternal or
two paternal pronuclei by McGrath and Solter and
independently by Surani et al. in 1984 established non-
equivalence of the male and female nucleus as a major
cause of the non-viability of androgenetic and
parthenogenetic embryos (Mcgrath and Solter 1984;
Barton et al. 1984). The lethality of biparental andro-
genetic and parthenogenetic embryos dismissed the
notion of homozygosity of lethal genes as a major cause
of death of gynogenic embryos (Barton et al. 1984).
The differential functioning of the maternal and paternal
chromosome had already been observed in the process
of sex determination in two insect species, Sciara and
the Mealybugs, as well as for X-chromosome inacti-
vation in extra-embryonic tissues of mice (Crouse 1960;
Brown and Nur 1964; Khosla et al. 2006). Another
well-studied case of differential chromosomal func-
tioning was Thp mice mutant (Leighton et al. 1995). Thp

mice mutant with a large deletion on chromosome 17
exhibited opposing phenotype depending on the parent
from which the mutation is acquired. Inheritance of Thp

allele from male parents produced viable embryos
whereas Thp allele, when inherited from a female, died
in utero. Reciprocal nuclear transplantations between
the single cell embryo from Thp/? and ?/? females,
confirmed the necessity of a functional maternal chro-
mosome 17 (not paternal) for normal embryo develop-
ment (Leighton et al. 1995). Similar to the opposing
phenotype of heterozygous Thp mice, defects in the
development of androgenetic and gynogenetic embryos
were strikingly different. Androgenetic embryos were
highly underdeveloped even when trophoblastic tissues
were well developed. Gynogenetic embryos developed
to 25-cell somite stage and had underdeveloped tro-
phoblastic tissues (Surani et al. 1984; Mcgrath and
Solter 1984; Barton et al. 1984). Similar observations
were made in abnormal human pregnancies such as
Hydatidiform mole and triploid human embryos.
Hydatidiform moles, abnormal human pregnancies
which were karyotypically normal and diploid, were
found to be of paternal origin and followed develop-
mental abnormality of androgenetic embryos (Jacobs
et al. 1980). The phenotype of the triploid human
embryos depended from which parent the embryo

acquired an extra set of the chromosome. Diandric tri-
ploids exhibited trophoblastic hyperplasia and mal-
formed fetus. The fetal development of digynic triploid
embryos was severely retarded with sparse extra-em-
bryonic tissues (McFadden et al. 1993; Tycko 1994).
Further studies on disomic mice and pedigree analysis
of several human genetic disorders indicated differential
functioning of genes or parts of chromosome when
inherited through the male and female germline (Cat-
tanach and Kirk 1985; Spence et al. 1988; Knoll et al.
1989; Voss et al. 1989; Tycko 1994). Igf2, Igf2r, and
H19 were the earliest genes discovered to be imprinted
in mice (Dechiara et al. 1991; Barlow et al. 1991;
Bartolomei et al. 1991). Targeted deletion of genes,
positional cloning, nuclease protection assay and in situ
hybridization experiments on RNA isolated from wild-
type and mutant mice, differential display and differ-
ential cDNA screen of androgenetic and partheno-
genetic embryos, restriction landmark genome
scanning, microarray based on SNP etc were used to
uncover imprinted genes. As more and more imprinted
genes and their functions were discovered, genomic
imprinting was recognized as one of the major cause of
lethality of uniparental embryos. Currently, 149 mouse
and 256 human genes have been discovered to be
imprinted.

2. Imprinted gene expression

Imprinted genes are genes that are expressed only from
one allele in a parent-of-origin-specific manner (Surani
et al. 1984). Most of the imprinted genes are found in
clusters (Barlow2011).An imprinted clustermay consist
of more than three or four genes and span 1MB and code
at least one ncRNA. Most of the genes within the
imprinted cluster showmonoallelic expression but a few
genes might escape the imprinting and are expressed
from both the alleles. Sixteen such genomic regions with
a cluster of imprinted genes have been identified in the
mouse genome (Barlow 2011). A few imprinted genes
are not locatedwithin these clusters. These are referred to
as micro-imprinted loci. Some of these micro-imprinted
loci consist of two genes – with one gene located within
the intron of the other and are known as intronic-host
imprinted loci (Mccole and Oakey 2008). The intronic
gene in most cases is imprinted whereas the host gene
codes for various transcripts and displays transcript-
specific imprinted expression (Mccole and Oakey 2008;
Thamban et al. 2019).
The functionality of the allele that is expressed

depends on whether the allele is recognized by the
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transcriptional machinery. The regulation of gene
transcription within a locus is dependent on various
epigenetic marks present on the chromatin. Hence the
imprinting requires that the two alleles be marked
differentially to regulate the transcription process. The
regulatory elements or regions within an imprinted
locus that regulate the monoallelic expression of the
loci through its differential DNA methylation, histone
modifications, and chromatin organizations is known
as Imprint Control Regions (ICRs) (Bartolomei and
Tilghman 1999; Ideraabdullah et al. 2008; Barlow
2011). The differential epigenetic modifications present
on the two alleles of an imprinted act in cis and renders
one of the allele transcriptionally active and the other
silent (Bartolomei and Tilghman 1999; Ideraabdullah
et al. 2008; Barlow 2011).

2.1 Epigenetic modifications within imprinted
genes: the allele-specific imprints

Other than its ability to regulate transcription, the
imprint that distinguishes the two alleles of an
imprinted gene should be faithfully replicated as the
cells undergo division. Another characteristic of
imprint mark is that the mark should be established on
the maternal and paternal allele when the paternal and
maternal genomes are separate from each. These marks
must be erased and new marks put on in the developing

gametes depending on the gender of the organism
(figure 1).

2.1.1 DNA methylation: DNA methylation was the
first epigenetic modification to be correlated with par-
ent-of-origin expression of imprinted gene (Reik et al.
1987; Sapienza et al. 1987). DNA methylation at var-
ious cis-elements such as promoters, silencers, enhan-
cers, and insulators has a profound effect on
transcription. One of the well-studied imprinted loci
H19/Igf2 locus consists of a lncRNA that is transcribed
from the maternal allele and the Igf2 protein-coding
gene, which is transcribed from the paternal allele
(Ideraabdullah et al. 2008). The ICR of the locus is
present 2 kb upstream of the start of H19 transcription
and 80 kb downstream of Igf2 (Thorvaldsen et al.
1998). The ICR was found to be an insulator and on the
unmethylated maternal allele it bound to CTCF protein
blocking the interaction of downstream enhancers with
Igf2 promoters (Kaffer et al. 2000; Szabo et al. 2004).
The downstream enhancer interacts with the H19 pro-
moter and results in transcription of H19 lncRNA from
the maternal allele (Kaffer et al. 2000; Szabo et al.
2004). CTCF is unable to bind to the ICR on the
paternal allele when it is methylated and downstream
enhancers then are able to interact with the Igf2 pro-
moter and activate its transcription whereas H19 tran-
scription is repressed (Kaffer et al. 2000; Szabo et al.
2004).

Figure 1. During development, paternal imprints (blue chromosome) and maternal imprints (red chromosome) are
established in a sex-specific mode in the mature germ line cells. Once founded, these imprints are maintained in the course of
post fertilization global DNA methylation changes triggered by demethylation of the paternal and maternal genomes. These
imprints are retained throughout in the somatic cells. However, in primordial germ cells (PGCs), the imprints undergo erasure
and are reset for the next generation.

Role of genomic imprinting in mammalian development Page 3 of 21    20 



DNA methylation has the ability to regulate tran-
scription and can be faithfully replicated as the cells
undergo division. DNA methylation dynamics during
germ cell development ensures the erasure and re-
establishment of DNA methylation in paternal and
maternal genome separately. Thus DNA methylation
fulfills all criteria to be the ‘‘imprint mark’’ (Barlow
2011).
Role of DNA methylation as imprint marks was

established through transgene studies. Further studies
in mutant mice confirmed this notion. Dnmt1 knockout
mice exhibited impaired imprinting of Igf2r, Igf2 and
H19 expression (Li et al. 1993). Homozygous mutant
Dnmt3l females gave birth to heterozygous progeny
that were devoid of maternal imprints and thus resulted
in biallelic expression of imprinted genes (Bourc’his
et al. 2001). Studies in mutant mice showed Dnmt3l
and Dnmt3a cooperatively establish methylation marks
(Hata et al. 2002). The differential DNA methylation
established at the time of gametogenesis on the parental
alleles is termed as gDMR (germline-DMR) or primary
DMRs (Barlow 2011; Kelsey et al. 2013). When these
gDMRs withstand the demethylation wave at the early
embryonic stage and are faithfully replicated in the
somatic cells, it can act as imprint control mark (Kelsey
et al. 2013). Targeted deletions of several gDMRs
resulted in the loss of imprinting (Thorvaldsen et al.
1998; Wutz and Barlow 1998; Fitzpatrick et al. 2002;
Lin et al. 2003; Williamson et al. 2006; Kim et al.
2012). Most of these gDMRs were found to act as ICR.
23 ICRs are methylated on the maternal allele (apart
from 11 putative maternal ICR) and 4 on the paternal
allele (Wang et al. 2014; Stewart et al. 2016). Some-
times imprinted loci can contain two gDMRs as in the
case of Gnas and Pws.
The timeline and acquisition of DNA methylation at

male and female differ considerably. In line with the
above observation, imprints are established prenatally
in prospermatogonia whereas, in female gametes,
imprint establishment occurs after birth in the growing
oocyte as in de novo methylation of other regions
(Stewart et al. 2016).Before imprint acquisition, the
previous imprint marks have to be deleted and new
imprint marks established according to the gender of
the embryo. The imprint erasure takes place at the
second wave of PGC demethylation and involves
TET1 and TET2. The time of imprint erasure differs
from ICR to ICR and occurs within the window of
E10.5 –E12.5 dpc. Paternal gDMRs are completely
established by E17.5 dpc and is a pre-meiotic event that
has to be faithfully replicated as male gametes undergo
mitotic and meiotic divisions. All of the maternal

gDMRs identified are CpG rich promoters and found in
intragenic regions. The maternal gDMRs are estab-
lished post-meiosis and methylation proceeds with the
growth of the oocyte with no further cell divisions. All
gDMRs are not established simultaneously but over a
period of time as de novo methylation begins and
proceeds in the germlines. Dnmt3a along with Dnmt3l
is required for imprint establishment at both the
paternal and maternal allele. Only ICR to be methy-
lated by Dnmt3b is the Rasgrf1 DMR.
It has now been concluded that there is no specific

imprinting machinery involved in establishing gDMRs
but rather gDMRs are established as part of universal
DNA methylation system. After fertilization, both
paternal and maternal genome undergoes active and
passive DNA demethylation. Most of the DNA
methylation acquired by the gametes is erased at this
stage except for those on imprinted loci. Thus
imprinting seems to be a consequence of protection
from DNA demethylation wave at the early embryonic
stage (Seisenberger et al. 2013).

2.1.2 Histone modifications: Around 147bp of DNA is
wrapped twice around the nucleosome octamer com-
posed of H2A, H2B, H3, and H4. Various post-trans-
lational modifications of these histone proteins affect
the interaction of DNA and nucleosome and can reg-
ulate transcription.
Histone modifications play an important role in

regulating the transcription of imprinted genes. Rather
than imprint establishment, histone modifications are
probably involved in the somatic maintenance of
imprints (Weaver and Bartolomei 2014). Several
imprinted domains consist of allele-specific deposition
of histone modifications at the imprint control region as
well as at the promoters of the imprinted genes. H3
acetylation, H4 acetylation, H3K4me2, and H3K4me3
are associated with normally active unmethylated allele
whereas H3K27me3, H3K9me2 and H3K9me3 are
found on inactive methylated allele (Mcewen and
Ferguson-Smith 2010). It was found that all the ICR
except one, had tri-histone mark consisting of
H3K4me3, H3K9me3, and H4K20me3 (Mcewen and
Ferguson-Smith 2010).Though H3K27me3 was pre-
sent on ICRs, but not on all (Mcewen and Ferguson-
Smith 2010). H3K27me3 marks were mostly found to
be involved with the developmental regulation of
imprinted gene expression (Mcewen and Ferguson-
Smith 2010).
The imprinting of the Dlk1–Gtl2 locus is regulated by

interactions between DNA methylation and histone
modification.Dlk1–Gtl2 consists of twoDMRs- IG-DMR
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that controls the imprinted expression on the maternal
allele and Gtl2 DMR that regulates imprinting of both
parental alleles (Carr et al. 2007). Allele-specific histone
acetylation was found only on the Gtl2 DMR on the
maternal allele. Insertion /deletion of sequences upstream
of Gtl2 promoter disrupted the imprinted expression
concomitant with loss of DNA methylation and gain of
paternal histone acetylation at the Gtl2 DMR (Carr et al.
2007). The ICRs of maternally imprinted regions such as
Snrnpn, Igf2r, U2af1-rs1 genes exhibit allele-specific
histone modifications with H3 acetylation and methyla-
tion of H3K4 on the unmethylated paternal allele and
H3K9me3 enrichment on the methylated maternal allele.
Furthermore, MBD proteins such as MeCP2, MBD1 are
found to be enriched on the maternal allele of the U2af1-
rs1 gene. These proteins can interact with histone
deacetylase complexes (such as NuRD, Sin3A, and
Sin3B) and might recruit them to the maternal allele
whereas on the paternal allele H3K4methylation prevents
such recruitment. G9a histone methyltransferase that
methylates H3 at lysine 9 has been implicated in genomic
imprinting in placenta and embryonic stem cells (Wags-
chal et al. 2008; Zhang et al. 2016). Knockout of G9a in
mouse led to impairment of placenta-specific imprinting
with a concomitant loss in H3K9me3 and H3k9me2
(Wagschal et al. 2008). Knockdown or knockout of G9a
in ESCs led to widespread loss of DNA methylation at
ICR along with the loss of H3K9me2marks (Zhang et al.
2016). Allele – specific DNA methylation loss in G9a-
deficit cells is dependent on TET1/TET2 that also medi-
ates DNA demethylation in PGCs (Zhang et al. 2016).
More importantly, H3K9me2 marks are protected from
TET3 mediated DNA demethylation by its binding to
PGC7/Stella. Another protein ZFP57 that binds to
methylated DNA recruits SETDB1 and HP1a that ulti-
mately increasesH3K9me3deposition and compaction of
chromatin. Methylated ICRs are marked by H3K9me3 as
well asH4K20me3 (Pannetieret al. 2008).Knockdownof
SUV4-20H that methylates H4K20me1 in MEFs led to
decrease in H4K20me3 as well as H3K9me3 on the
methylated ICRs without affecting its DNA methylation
(Pannetier et al. 2008). Thus histone modifications can
interact with one another to reinforce the silencing of the
methylated allele. Methylated ICRs are marked by
H3K9me3 as well as H4K20me3 (Pannetier et al. 2008).
ThoughH3K9me2/3 are implicated in themaintenance of
gDMRs, H3K4me2/3 marks are associated with maternal
imprint acquisition (Ciccone et al. 2009; Wasson et al.
2016). Methylation of H3K4 repels DNMT3A-DNMT3l
complex and prevent DNA methylation and hence has to
be removed before the acquisition of DNA methylation
(Ciccone et al. 2009). In line with this hypothesis, it has

been observed that KDM1B/LSD2 (histone demethylase)
is highly expressed in growing oocytes and its ablation led
to the accumulation of H3K4me2/3 and loss of imprint
acquisition at several maternal ICR (Mest, Zac1, Impact,
Peg3, and Snrpn; (Ciccone et al. 2009). Hypomorphic
maternal KDM1A (LSD1) led to partial perinatal lethality
anddisruptionof genomic imprinting anddecreasedDNA
methylation at ICR and altered transcription of imprinted
genes (Wasson et al. 2016). Thus histone methylation at
ICR plays a critical role on both imprint establishment as
well as imprint maintenance.
Transcription of imprinted genes is not always

affected by the histone modifications at the ICRs.
Histone modifications at the promoters of the imprinted
gene also affect its transcription. In case of Igf2-H19
locus, H4 hyperacetylation (H4K8Ac, H4K16Ac,
H4K12Ac, and H4K5Ac) was found to be enriched on
the active promoters of the H19 and Igf2 genes but
differential H4 hyperacetylation was not observed on
its ICR. But trichostatin A treatment of the fibroblast
cells led to decreased expression of H19 with a con-
comitant change of H4 acetylation level at its ICR
without affecting the DNA methylation levels in the
same region. At Igf2r imprinted locus, H4 hyper-
acetylation was associated only with active promoters.
Trichostatin A treatment of the fibroblast cells, induced
partial relaxation of the imprinted expression along
with decreased DNA methylation at the promoters.
Grb10, a tissue-specific imprinted gene with promoter-
specific expression is maternally expressed only from
the major promoter in most tissues however, in the
brain, Grb10 is paternally expressed from a promoter
specific to the brain (Yamasaki-Ishizaki et al. 2007;
Sanz et al. 2008). The major type promoter is biallel-
ically hypomethylated regardless of its transcription
status whereas the brain-specific promoter is a DMR
and maintains the methylated status in the brain (Ya-
masaki-Ishizaki et al. 2007; Sanz et al. 2008). Histone
modification analysis at the locus revealed the tran-
scription at the major type promoter was controlled by
H3K27me3 marks (Yamasaki-Ishizaki et al. 2007).
Brain-specific promoter carries bivalent mark
(H3K4me2 and H3K27me3) in the embryos that are
resolved only in the brain during development (Sanz
et al. 2008). Moreover, a transcriptionally silent allele
of maternal ICRs is enriched for bivalent marks
(Maupetit-Méhouas et al. 2016).
A recent paper has established the role of

H3K27me3 in DNA methylation-independent genomic
imprinting (Inoue et al. 2017b). 76 candidate genes
were identified to be imprinted by maternal H3K27me3
several of which are involved in placental development
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(Inoue et al. 2017b). These genes are characterized by
allele-specific DNase I hypersensitivity site and bial-
lelic expression upon KDM6B (demethylates
H3K27me3) knockdown in embryos (Inoue et al.
2017b). These genes are found to be imprinted tran-
siently in pre-implantation embryo, with only a few
genes maintaining imprinted expression in post-im-
plantation embryo and placenta (Inoue et al. 2017b).

2.1.3 Non-coding RNA: As mentioned earlier most of
the imprinted genes are found to be clustered together
and can span 80–3700 kb of DNA sequences. The
most common feature of such imprinted clusters is
presence of at least one lncRNA. This lncRNAs are
either antisense-lncRNA or intergenic lncRNA and are
always expressed from the allele on which the protein-
coding gene is repressed (Barlow 2011). Mostly the
promoters of antisense lncRNA within an imprinted
locus are a gDMR (methylated on the maternal allele)
and ICR of the imprinted loci (Barlow 2011). Methy-
lation of the antisense lncRNA promoter represses its
expression whereas the protein-coding gene within the
locus is expressed. When unmethylated, the promoter
of ncRNA is active and there is repression of the pro-
tein-coding genes. Igf2r, Kcnq1, Gnas, Pws are well
defined imprinted locus with maternal ICR at the pro-
moter of antisense lncRNA (Thakur et al. 2004; Wil-
liamson et al. 2006; Nagano et al. 2008; Barlow 2011).
When the ICRs of these genes are deleted from the
allele on which it is unmethylated, it leads to biallelic
expression of the protein-coding genes within the
imprinted loci. Given below are few examples by
which ncRNA are involved in the establishment of ICR
and transcription fine-tuning of imprinted loci. Apart
from lnc RNA, enhancer RNA (eRNA) and piRNA
were also found to be involved in imprint establishment
and maintenance.
Igf2r imprinted loci codes for a 108kb Airn lncRNA

that is paternally expressed and three other maternally
expressed protein-coding genes (Igf2r, Slc22a2, and
Slc22a3) (Nagano et al. 2008; Latos et al. 2012). Airn
lncRNA is transcribed antisense to Igf2r and represses
all three protein-coding genes (Nagano et al. 2008;
Latos et al. 2012). Airn lncRNA transcripts overlap
with the Igf2r promoter and prevent RNA polII
recruitment (Latos et al. 2012). Slc22a3 promoter is
silenced by Airn lncRNA by recruiting G9a and sub-
sequent enrichment of H3K9me3 (Nagano et al. 2008).
Kcnq1/Cdkn1c imprinted locus contains 10–12

imprinted genes and is located on the distal end of
chromosome 7. Some of the protein-coding genes are
ubiquitously expressed whereas some expressed only

in placenta. All the genes in this locus that code for
proteins are expressed from the maternal allele. Kcn-
q1ot1, the only lncRNA in this locus, is transcribed
from the paternal allele. The promoter of Kcnq1ot1 also
known as KvDMR1 was identified as the ICR of Kc-
nq1/Cdkn1c imprinted locus and is methylated on the
maternal allele (Mancini-DiNardo et al. 2003; Cerrato
et al. 2005). The bidirectional silencing property of
KvDMR1 was shown to be regulated by Kcnq1ot1
(Thakur et al. 2004). Kcnq1ot1establishes lineage-
specific transcriptional silencing by recruiting G9a and
PRC2 complex to the paternal allele in placenta (Pan-
dey et al. 2008). Kcnq1ot1 lncRNA contain an 890bp
region that interacts with Dnmt1 and helps in the
maintenance of sDMRs at Kcnq1/Cdkn1c imprinted
loci without affecting the histone modifications (Mo-
hammad et al. 2010).
Dlk1-Dio3 locus consists of three paternally

expressed protein-coding genes, Dlk1, Dio3 and Rtl1/
Mart1 and several maternally expressed non-protein
coding RNA including miRNAs and C/D small
nucleolar RNA gene (Edwards et al. 2008). The ICR of
the Dlk1-Dio3 locus has been identified as an inter-
genic differentially methylated region (IG-DMR)
located 75bp downstream of Dlk1 (Luo et al. 2016).
The IG-DMR is methylated on the paternal allele and
its deletion when inherited from the mother results in
maternal to paternal epigenetic switching (Luo et al.
2016). The IG-DMR has been identified as an enhancer
region capable of transcribing bidirectional eRNA
(Kota et al. 2014). The IG-DMR includes enhancer
marks such as H3K4me2 and H3K27ac and DNaseI
hypersensitivity site on the active maternal allele (Kota
et al. 2014). The bidirectional eRNA was transcribed
from the maternal allele in ESCs and neuronal cells
(Kota et al. 2014). The IG-DMR ncRNA transcription
from the maternal allele was linked to early DNA
replication of the maternal allele as well as subnuclear
localization of the same (Kota et al. 2014). The IG-
DMR ncRNA was found to act in cis and shRNA
knockdown of the same led to the loss of IG-DMR
enhancer activity and aberrant DNA methylation and
H3K9me3 marks (Kota et al. 2014).
Rasgrf1 locus comprises of protein-coding gene

Rasgrf1 and several ncRNA like A19 expressed pre-
dominantly from the paternal allele (Yoon et al. 2002;
Ratajczak et al. 2011; Watanabe et al. 2011). Rasgrf1 is
expressed exclusively from the paternal allele in
neonatal brain whereas in other organs Rasgrf1
expression is biallelic but predominantly from the
paternal allele (Yoon et al. 2002). The ICR of Rasgrf1
constitutes a binary switch 30kb upstream of the
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Rasgrf1 TSS, which includes a repeated sequence
element of 41-mer repeated 40 times and upstream
DMR methylated on the paternal allele (Yoon et al.
2002, 2005). Methylation of the upstream DMR is
controlled by the 41mer repeat unit (Yoon et al. 2002).
Repeat sequence, when deleted from the paternal allele,
led to the loss of DNA methylation as well as
expression of Rasgrf1 (Yoon et al. 2002). The DMR
was found to be an enhancer blocker that binds to
CTCF on the unmethylated maternal allele and thus
repress the expression of Rasgrf1 (Yoon et al. 2005).
Moreover, Rasgrf1 is the only imprinted known so far
that need DNMT3B for imprint establishment
(Watanabe et al. 2011). Many piRNAs derived from
chromosome 7 was targeted to ncRNA(pit-RNA)
derived from the retrotransposon sequence RMER4B,
mapped upstream of the direct repeat (Watanabe et al.
2011). The transcription of the pit-RNA is initiated
within the direct repeat sequence (Watanabe et al.
2011). The pit-RNA is targeted by the piRNA derived
from chromosome 7, which then recruits DNA
methyltransferase complex to the DMR to methylate
the Rasgrf1 DMR (Watanabe et al. 2011).
Thus various epigenetic marks such as DNA

methylation, Histone modifications, and ncRNA are
involved in the establishment as well as maintenance of
imprint marks or ICR at imprinted loci. These marks
either independently or by recruiting each other fine-
tune the expression of imprinted genes.

3. Role of genomic imprinting in development

Assisted reproductive techniques (ART) including ICSI
(Intracytoplasmic sperm injection) and IVF (In vitro
fertilization) have helped in the treatment of infertile
people. However, there is an increased realization that
many children born using ART have genomic
imprinting disorders. Imprint establishment occurs in
the gametes and these imprints are faithfully main-
tained after fertilization. Imprint establishment and
maintenance being an epigenetic process is vulnerable
and hence can be influenced by the external environ-
ment as any other epigenetic process. Since the process
of ART includes several procedures like in vitro cul-
turing, cryopreservation etc., it has the potential to
change the environmental cues for the developing
embryo and hence can influence the canonical estab-
lishment and maintenance of genomic imprints. The
problems associated with ART emphasize the role of
imprinted genes in the development of the embryo
especially during earlt embryogenesis and placental

development. Therefore, below we have explored the
role of imprinted genes in fetal and placental
development.

3.1 Role of genomic imprinting in fetoplacental
growth and development

Several experimental pieces of evidence point out to
the importance of imprinted genes in fetoplacental
development regulating placenta implantation, growth,
and embryogenesis (Lambertini et al. 2012).
Many imprinted genes have been associated with

fetal-growth-promoting pathway and fetal-growth
restricting pathways (table 1). Major imprinted genes
involved in fetal growth-promoting pathway include
Igf2, Igf2r, and Dlk1, whereas major imprinted gene
involved in fetal growth-restricting pathway involve
Grb10, Cdkn1c (Cassidy and Charalambous 2018).
Table 1 gives a list of imprinted genes involved in fetal
developmental pathways. Apart from individual
imprinted genes, an imprinted gene network (IGN)
consisting of a group of imprinted genes that influence
the expression of each other is shown to affect fetal
development. Zac1 is a zinc finger transcription factor
that induces apoptosis and cell-cycle arrest. Zac1 binds
to the H19/Igf2 enhancer and alter its expression as
well as alter the expression of Cdkn1c, and Dlk1
involved in IGN (Varrault et al. 2006). Zac1 was found
to target 22% of genes that make up IGN and coordi-
nates regulation of a subset of IGN genes and extra-
cellular matrix composition (Varrault et al. 2017). H19
has been hypothesized as trans-factor that fine-tune
IGN (Gabory et al. 2009). Apart from the direct effect
of these imprinted genes in the growth and develop-
ment of the fetus, genomic imprinting in placenta also
plays an important role in controlling fetal
development.
The success of mammalian reproduction depends on

specialized organ called placenta that mediates nutrient
transfer, thermos-regulation, waste elimination and gas
exchange between the mother and fetus (Fowden et al.
2011). All eutherian mammals rely on chorioallantoic
placenta derived from the trophoblast lineage (John and
Hemberger 2012; Rai and Cross 2014). Placenta also
prepares the maternal physiology for changes that
allocates and increases nutrient supply to offspring
both during pregnancy and immediately after birth
(John 2017). These changes in maternal physiology are
mediated partly by placental hormones: placental pro-
lactin (in mice and humans) and placental growth
hormone (in humans) (John 2017). Placental lactogen
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plays an important role in stimulating mammary glands
for milk production as well as triggering maternal care
(John 2017). The mice placenta can be divided into
three major layers, with the outermost maternal layer of
decidua basalis containing glycogen cells, secondary
parietal trophoblast giant cells (TGCs), a single layer of
cells with giant nuclei, a junctional zone formed of
glycogen cells and spongiotrophoblast with endocrine
functions and the labyrinth zone consisting of two
types of syncytiotrophoblast cells that are important for
nutrient and gas supply and form the fetal-maternal
interface (John and Hemberger 2012; Rai and Cross
2014).
One of the most interesting facts is the presence of

genomic imprinting only in placental mammals (Cas-
sidy and Charalambous 2018). Several genes have been
found to be specifically imprinted only in the placenta
(table 2, Cassidy and Charalambous 2018). Expression
of genes from placenta-specific promoter results in

placenta-specific mRNA splice variant. Imprinting
status of various genes was found to be conserved
between species even though spatiotemporal expres-
sion pattern may vary with species (Cassidy and
Charalambous 2018). Genomic imprinting in the pla-
centa is regulated developmentally and is highly sen-
sitive to external environmental cues (Cassidy and
Charalambous 2018). Abnormal placental weights
were observed in human infants with imprinting dis-
orders such as Beckwith-Weidemann and Silver Rus-
sell syndromes (Õunap 2016). Targeted deletion of
imprinted genes, uniparental duplications, loss of
imprinting induced either by deletion of ICR or by
administration of 5-azacytidine resulted in small pla-
centae with abnormalities in proliferation, apoptosis
and trophoblast differentiation (Fowden et al. 2011).
Changes in dosage of imprinted genes both overex-
pression as well as loss of expression led to gross
morphological changes including zonal

Table 1. Imprinted genes and function in fetal development

Imprinted
gene

Biallelic expression
phenotype Loss of expression phenotype Associated Signaling pathway References

Igf2 Embryonic overgrowth Growth restriction The rate of cellular
proliferation that increases
total cell number

Dechiara et al.
(1991); Ferguson-
Smith et al.
(1991); Leighton
et al. (1995)

Igf2r Viable Overgrowth generalized
organomegaly, kinky tail,
postaxial polydactyly, heart
abnormalities, and edema die
perinatally

Turnover of Igf2 by receptor-
mediated endocytosis

Ludwig et al.
(1996)

Grb10 Significant
undergrowth

Overgrowth Insulin signaling

H19 Postnatal growth
reduction

Overgrowth The regulation of several genes
of the IGN

Gabory et al.
(2009)

Peg1 Embryonic growth retardation
and behavioral changes in
maternal mice decreased
reproductive fitness

Maternal behavior Gabory et al.
(2009)

Cdkn1c Embryonic growth
retardation reduction
in the expression of
embryonic growth
factor, Igf1

11% heavier embryo a two-
fold increase in Igf1

Regulate cell proliferation Andrews et al.
(2007)

Zac1 Intrauterine growth restriction
and neonatal lethality

Regulates expression of
Cdkn1c and Dlk1, and it
directly regulates the H19/Igf2
locus through binding of its
shared enhancer

Varrault et al.
(2006, 2017)

Dlk1 Overgrowth Growth retardation,
accelerated adiposity, eyelid
and skeletal deformations

Prevents premature Notch-
dependent differentiation,
Soluble DLK1 acts as an
inhibitor of adipogenesis

Falix et al. (2013);
Cleaton et al.
(2016)
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disorganization, changes in proportions of junctional
zone and labyrinth zone, number of glycogen cells and
trophoblast cells, underdevelopment of spongiotro-
phoblast cells, barrier thickness and vascularity of
labyrinth zone and altered placental efficiency
measured as the ratio of fetal to placental weight
(Fowden et al. 2011; John 2017; Cassidy and Char-
alambous 2018). Imprinting defects that affect spon-
giotrophoblast and parietal TGCs can interfere with
endocrine functioning of the placenta (John 2017).

Changes in placenta morphology might or might not
affect nutrient uptake. Aberrant expression of the cer-
tain imprinted gene also affects glucose transporters,
System A amino acid transporters and hence nutrient
uptake by the fetus (John 2017). Table 2 provides a list
of imprinted genes and its role in placental develop-
ment and function. Disrupted imprinted gene expres-
sion can also affect fetal growth.
Aberrant expression of imprinted genes within pla-

centa can affect the fetal development and behavior. A

Table 2. Imprinted genes and function in placental development

Imprinted
gene Knockout phenotype References

Peg10 Early placental development Ono et al. (2006)
Igf2 Decreased labyrinth size

Decreased trophoblast surface area surface
Decreased glycogen cells
Altered placental efficiency
Poor passive permeability
Slc38a2, System XAG and System Y? amino acid
transporter is down regulated

Matthews et al. (1999); Constância et al. (2002); Sibley
et al. (2004); Constancia et al. (2005)

IGF2 P0 Reduced placental weight
Reduction in passive diffusion
Affects small, neutral amino acids via System A
Transporters

Constância et al. (2002); Sibley et al. (2004); Angiolini
et al. (2006)

Grb10 Increase in labyrinth size and the surface area for
exchange
Altered placental efficiency

Charalambous et al. (2010)

Aquaporin Vascular branching density Guo et al. (2016)
Mash2 Early placental development Guo et al. (2016)
Phlda2 Absolute increases in labyrinthine

Larger spongiotrophoblast
2-fold increase in expression of the placental
lactogens

Altered placental efficiency

Tunster et al. (2010, 2016)

Dkl1-Dio3 ltered placental efficiency Prats-Puig et al. (2017)
H19 Absolute increases in labyrinthine trophoblast

Altered placental efficiency
Poor passive permeability
Slc38a2 is down regulated

Ying et al. (2010); Bourque et al. (2010); Koukoura et al.
(2011); Gao et al. (2012)

Peg1 Growth restriction of the placenta
Impaired angiogenesis

Mayer et al. (2000)

Rtl1 Fetal vascular abnormalities
Impaired basement membrane

Sekita et al. (2008)

Cdknlc/
p57Kip2

Increased spongiotrophoblast
Decreased labyrinthine trophoblast

Takahashi (2000)

Peg3 Growth restriction of the placenta
Changes in the expression of a number of
placental lactogens

Li (1999)

Ascl2 Spogiotrophoblast development Li (1999)
Slc22a3 Inhibition of Monoamine transfer Zwart et al. (2001)
Sfmbt2
miRNA

Severely impaired spongiotrophoblast layer, Inoue et al. (2017a)

Sfmbt2 Reduction of all trophoblast cell types Miri et al. (2013)
Kcnq1 Trophoblast giant cell (TGC) expansion Koppes et al. (2015)
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study conducted in 677 term human pregnancy, found
2-fold increased expression 9 imprinted genes (BLCAP,
DLK1, H19, IGF2, MEG3, MEST, NNAT, NDN, and
PLAGL1) in placenta to be positively correlated to the
Large for Gestational Age (LGA) status of fetus
(Kappil et al. 2015). A study by Green et al. reported
10 imprinted genes (DLX5, DHCR24, VTRNA2-1,
PHLDA2, NPAP1, FAM50B, GNAS-AS1, PAX8-AS1,
SHANK2, and COPG2IT1) associated with infant
neurobehavioral development in humans (Green et al.
2015). One of the Rhode Island Child Health Study
(RICHS) identified two clusters of imprinted genes
deregulated in human placenta that affect the growth of
fetus measured by birth weight, newborn head cir-
cumference and size for gestational age. The first
cluster of imprinted genes involved in cell growth and
tissue development and the second cluster in coordi-
nating theses process (Lambertini et al. 2012).
Importance of imprinted genes in placental devel-

opment and in effect the development of the fetus is
underlined by the fact that imprinting status is more
sensitive to early environmental cues in placenta than
in fetus (Hamada et al. 2016). It was found that many
of the transient maternal gDMRs lost in embryonic
tissues after implantation persisted in human placenta
and correlated with imprinted gene expression indi-
cating that the germline DNA methylation is incom-
pletely erased in the human placenta (Hamada et al.

2016). Exposure of mother to endocrine disruptors
such as BPA and phthalates, residential air pollutants,
alcohol consumption resulted in imprinting defects in
placenta (Kingsley et al. 2017; Strakovsky and Schantz
2018; Carter et al. 2018).
Imprinted genes can thus control fetal development

directly through various growth- promoting or growth-
restricting pathway as well as by modulating the
expression of other gene involved in development and
differentiation. Fetal development is also affected by
the efficiency of placenta which expresses a lot of
imprinted genes whose expression patterns are much
more sensitive to early environmental cues. Thus
proper imprinting in the placenta is not only vital for
fetal development but acts as a mediator that can pass
on the effects of the early maternal environment to
offspring (figure 2).

3.2 Role of genomic imprinting in the brain
and neuronal development

Differential role of parental genes in brain development
was first observed with gynogenic (Gg)/partheno-
genetic (Pg) and androgenetic (Ag) mouse chimeras.
Ag chimeras have a smaller brain size in spite of
heavier body weight. Gg/Pg chimeras have enhanced
brain development relative to smaller body weight

Figure 2. Imprinted genes can directly influence the fetal development as several imprinted genes are either a part of fetal
growth promoting or growth restricting pathways as well as a part of the imprinted gene network. Aberrant maternal
environment profoundly effect the expression of imprinted genes in the placenta in due course leading to changes in placental
function and/or morphology and thereby altering placenta efficiency and endocrine function in turn affecting the fetal
development. Aberrant maternal environment leading to loss of imprinting (LOI) can cause abnormal expression of the
imprinted gene from the paternal copy (P) or repression of the normally expressed maternal copy (M) as indicated by the
raised arrows.
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Table 3. Imprinted genes and function in neuronal and brain development

Imprinted
gene Function in neuronal and brain development References

Zac1 Induce expression of Cdkn1c and promote NSC cell
cycle arrest
Promotes differentiation of GABAergic interneurons
and Golgi cells

Valante et al. (2005); Chung et al. (2011)

Igf2 Self-renewal of neuroepithelial progenitor cells and
NSCs
Memory consolidation and retrieval

Lehtinen et al. (2011); Ouchi et al. (2013); Ferrón
et al. (2015)

Ndn Decreased proliferation of Intermediate Progenitor Cell
Inhibit the expression of Cdkn1c
Protection of neurons by promoting mitochondrial
biogenesis, protection of embryonic motoneurons
and sensory neurons from apoptosis

Proper functioning of the cortical GABAergic system
and gonadotropin-releasing hormone (GnRH)
neurons

Neuronal migration – tangential migration of
neocortical interneurons from basal forebrain,
migration of serotonin (5-HT) neuronal precursors
and expression of 5-HT Transporter (SERT/Slc6a4)
ultimately leading to respiratory disease

Control LepR sorting and degradation in hypothalamic
pro-opiomelanocortin neurons implicated in feeding
behavior and obesity phenotype

Modulates thyroid axis through acetylation of Foxo1 in
hypothalamic arcuate neurons

Axonal outgrowth
Prevents apoptosis in cerebellar granule cells
Spatial memory

Muscatelli (2000); Lee et al. (2005); Kuwako (2005);
Andrieu et al. (2006); Kurita et al. (2006); Tennese
et al. (2008); Miller et al. (2009); Kuwajima et al.
(2010); Aebischer et al. (2011); Hasegawa et al.
(2012); Minamide et al. (2014); Matarazzo et al.
(2017); Wijesuriya et al. (2017)

Dlk1 NSC self-renewal in the adult brain
Cerebellar development
Survival of midbrain dopaminergic neurons
Proper thermoregulation
Post-natal development of hypothalamic functions
Knockout results in anxiety-like behaviors and
increased alcohol consumption

The determinant of motor neuron functional
diversification

Labialle et al. (2008); Jacobs et al. (2009); Ferrón et al.
(2011); Villanueva et al. (2012); Hiraoka et al.
(2013); Müller et al. (2014); Garcı́a-Gutiérrez et al.
(2018)

Grb10 Survival of midbrain dopaminergic neurons
Involved in social interactions (hyper-aggression and
social dominance)

Garfield et al. (2011); Hoekstra et al. (2013); Cowley
et al. (2014); Plasschaert and Bartolomei (2015)

Ube3a Survival of midbrain dopaminergic neurons
Antiapoptotic role in brain
Normal action potentials and synaptic plasticity
Proper pre-synaptic and post-synaptic function
Synaptic localization of AMPA receptors
Promotes long-term-potentiation (synaptic plasticity)
Hippocampal-related memory and learning
Contextual memory
Motor system behavior
Sleep induction and REM sleep
Proper circadian rhythm
Involved in social interactions
Involved in anxiety and depression

Mishra and Jana (2008); Heck et al. (2008); Yashiro
et al. (2009); Greer et al. (2010); Sato and Stryker
(2010); Jiang et al. (2010); Smith et al. (2011);
Wallace et al. (2012); Shi et al. (2015); Noor et al.
(2015); Sun et al. (2015)

Cdkn1c Actin polymerization critical for cell motility
Promote NSC cell cycle arrest
Antiapoptotic role in brain

Joseph et al. (2009); Matsumoto et al. (2011);
Furutachi et al. (2013); Peña et al. (2014)
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(Barton et al. 1991). Moreover, there was specific and
reciprocal localization of the uniparental cells within
the chimeric mice. Pg/Gg cells are found to be accu-
mulated in the frontal cortex, striatum, and hippocam-
pus whereas Ag cells are enriched in the hypothalamus
and pre-optic area (Keverne et al. 1996). Transcriptome
sequencing analysis by Gregg et al identified more

proportion of imprinted genes in the brain particularly
the hypothalamus and hindbrain when compared to a
control gene set in the cerebral cortex. Most of the
imprinted genes were for gene functions such as
feeding, maternal care, with feeding and metabolism,
and motivational behaviors. It was also found that in
the early embryonic development, there was an

Table 3 (continued)

Imprinted
gene

Function in neuronal and brain development References

Kcnk9 Resting potentials and neuronal excitability
Induces granule cell death through
Proper resting membrane potential
Sustained high-frequency firing in cerebellar granule
neurons

Proper REM and non-REM sleep
Proper working memory

Patel and Lazdunski (2004); Musset et al. (2006);
Linden et al. (2007); Pang et al. (2009); Bista et al.
(2015)

MAGEL2 Axonal outgrowth
Proper oxytocin level
Regulates normal circadian rhythm
Involved in social interactions
Proper melanocortin and dopamine pathway function
Proper POMC neuron activity

Kozlov et al. (2007); Schaller et al. (2010); Mercer
et al. (2013); Meziane et al. (2015); Pravdivyi et al.
(2015); Oncul et al. (2018); Ates et al. (2019)

Pcdhb20 Dendritic self-avoidance and neuronal wiring Perez et al. (2015)
Pcdhb12,
Pcdhb10

Dendritic self-avoidance and neuronal wiring Perez et al. (2015)

Peg3 Control of apoptosis in brain
Proper thermoregulation
Proper circadian rhythm
Proper maternal care
Proper hypothalamic functions (suckling ability in
pups and milk letdown in mums)

Maternal care behavior
Expression of Oxytocin receptor in the hypothalamus

Li (1999); Johnson et al. (2002); Curley et al. (2005);
Broad et al. (2009); Frey et al. (2018)

MEG3 Proapoptotic role in the brain
Modulates AMPA receptor surface expression in
primary Cortical neurons

Yan et al. (2017); Liang et al. (2018)

Rasgrf1 Differentiation of neurons in mouse dentate gyrus
Post-synaptic regulation
Contextual memory
Proper hypothalamic function especially hypothalamic
secretion of growth hormone (GH)-releasing
hormone (GHRH) and somatostatin

Brambilla et al. (1997); Giese et al. (2001); Li (2006);
Drake et al. (2009); Ye and Carew (2010); D’ISA,
Clapcote SJ, Voikar V, Wolfer DP, Giese KP,
Brambilla R (2011); D’ISA et al. (2011); Darcy et al.
(2014); Gómez et al. (2017)

Gnas Regulation of Schwann cell proliferation and
myelination
Proper REM and non-REM sleep
Contextual memory and exploration behavior
Proper feeding behavior in neonates

Chen et al. (2005, 2012); Kuwako (2005); Lassi et al.
(2012); Deng et al. (2017)

Dio3 Inactivates the thyroid hormone T3 thus affecting the
feeding behavior of neonates
Proper thermoregulation
Social interactions (aggression and maternal behavior)

Peeters et al. (2013); Martinez et al. (2014); Stohn
et al. (2018)

Snord116 Proper feeding behavior of neonates
Proper circadian rhythm
Feeding behavior
Proper sleep

Ding et al. (2008); Duker et al. (2010); Zhang et al.
(2012); Powell et al. (2013); Lassi et al. (2016); Qi
et al. (2016)
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enrichment in maternally expressed genes whereas in
adult brain regions there was more paternally expressed
genes (Gregg et al. 2010). These observations imply
the developmental regulation of imprinted genes in the
brain. Certain imprinted genes such as Dlk1 and Igf2
(imprinted in other tissues) were found to be bialleli-
cally expressed in brain implying the importance of
transcriptional dosage in neuronal and brain develop-
ment whereas certain genes such as Ube3a is imprinted
only in brain (Albrecht et al. 1997). The Grb10 is
expressed from the paternal allele in a subset of neu-
rons whereas it is expressed from the maternal allele in
other adult mouse tissues. This diversity in allelic bias
was also reflected in the transcriptome sequence anal-
ysis by Gregg et al. There were several genes that
display significant bias in parental allele expression
rather than absolute silencing of one allele (Gregg et al.
2010).
It has been hypothesized that the neocortical

expansion in mammalian evolution is influenced by
genomic imprinting in neocortex. Imprinted genes are
found to influence various neurodevelopmental pro-
cesses from self- renewal of neural stem cells, to cell
proliferation, differentiation as well as neuronal
migration, axonal and dendritic outgrowth (table 3). In
the adult brain, imprinted genes are found to influence
synaptic plasticity through controlling synaptic trans-
mission, action potentials, pre, and post synaptic reg-
ulation. Imprinted genes have very complex
spatiotemporal gene regulation. This has resulted in
having an impact on phenotypes influenced by brain
such as learning, memory, energy homeostasis and
social behaviors including mother-pup interactions
(Perez et al. 2016).

4. Closing remarks

This review explores the mechanisms underlying the
phenomenon of genomic imprinting and its role during
early embryogenesis and placental development.
Imprint establishment in gametes and its maintenance
in early developing embryo are the hall marks of
genomic imprinting and are important for the proper
development of the embryo. Incorrect dosage of
imprinted genes can have subtle but serious conse-
quences on the growth and development of embryo, its
metabolism, and the social behavior of the new born
and adult mammals. Importantly and as discussed in
this review, the epigenetic marks are established in the
germ cells of the parent and passed on to the progeny.
The phenomenon of genomic imprinting, thus, is a

classic case of intergenerational epigenetic inheritance.
Epigenetic modifications are dynamic and are influ-
enced by developmental and environmental cues.
Therefore, any aberrant environmental cues (including
those from the maternal environment) causing change
in the epigenetic imprints in the germ cells would have
transgenerational effects. With emphasis these days on
the impact of environment changes, studies on genomic
imprinting would help us in understanding the mech-
anisms behind epigenetic inheritance and its role in
shaping the evolutionary processes working on the
mammalian population in particular and the living
organisms in general.
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Zhang T, Termanis A, Özkan B, Bao XX, Culley J, De Lima
Alves F, Rappsilber J, Ramsahoye B and Stancheva I
2016 G9a/GLP complex maintains imprinted DNA
methylation in embryonic stem cells. Cell Rep. 15
77–85

Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C and
Barlow DP 2001 Impaired activity of the extraneuronal
monoamine transporter system known as uptake-2 in
Orct3/Slc22a3-deficient mice. Mol. Cell Biol. 21
4188–4196

Role of genomic imprinting in mammalian development Page 21 of 21    20 


	Role of genomic imprinting in mammalian development
	Abstract
	Discovery of imprinted genes
	Imprinted gene expression
	Epigenetic modifications within imprinted genes: the allele-specific imprints
	DNA methylation
	Histone modifications
	Non-coding RNA


	Role of genomic imprinting in development
	Role of genomic imprinting in fetoplacental growth and development
	Role of genomic imprinting in the brain and neuronal development

	Closing remarks
	Acknowledgements
	References




