[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Jha, V. and Pal, Ravi and Kumar, Dhiraj and Mukhopadhyay, Sangita (2020) ESAT-6 Protein of Mycobacterium tuberculosis Increases Holotransferrin-Mediated Iron Uptake in Macrophages by Downregulating Surface Hemochromatosis Protein HFE. The Journal of Immunology, 205 (11). pp. 3095-3106. ISSN 0022-1767

Full text not available from this repository. (Request a copy)

Abstract

Iron is an essential element for Mycobacterium tuberculosis; it has at least 40 enzymes that require iron as a cofactor. Accessibility of iron at the phagosomal surface inside macrophage is crucial for survival and virulence of M. tuberculosis ESAT-6, a 6-kDa-secreted protein of region of difference 1, is known to play a crucial role in virulence and pathogenesis of M. tuberculosis In our earlier study, we demonstrated that ESAT-6 protein interacts with β-2-microglobulin (β2M) and affects class I Ag presentation through sequestration of β2M inside endoplasmic reticulum, which contributes toward inhibition of MHC class I:β2M:peptide complex formation. The 6 aa at C-terminal region of ESAT-6 are essential for ESAT6:β2M interaction. β2M is essential for proper folding of HFE, CD1, and MHC class I and their surface expression. It is known that M. tuberculosis recruit holotransferrin at the surface of the phagosome. But the upstream mechanism by which it modulates holotransferrin-mediated iron uptake at the surface of macrophage is not well understood. In the current study, we report that interaction of the ESAT-6 protein with β2M causes downregulation of surface HFE, a protein regulating iron homeostasis via interacting with transferrin receptor 1 (TFR1). We found that ESAT-6:β2M interaction leads to sequestration of HFE in endoplasmic reticulum, causing poorer surface expression of HFE and HFE:TFR1 complex (nonfunctional TFR1) in peritoneal macrophages from C57BL/6 mice, resulting in increased holotransferrin-mediated iron uptake in these macrophages. These studies suggest that M. tuberculosis probably targets the ESAT-6 protein to increase iron uptake.

Item Type: Article
Subjects: Molecular Biology
Depositing User: Dr P. Divakar
Date Deposited: 10 Nov 2020 15:44
Last Modified: 05 Dec 2020 18:45
URI: http://cdfd.sciencecentral.in/id/eprint/979

Actions (login required)

View Item View Item